(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+1\)
\(\Leftrightarrow\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
=> x + 100 = 0
=> x = -100
Vậy x = -100
\(\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
\(\Leftrightarrow x+100=0\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\right)\)
<=> x=-100
ko chép đề nhé
\(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95} \)
=> \((x+100)(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95})=0\)
vì \((\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}) khác 0\)
=>\(x+100=0\)
=>x=-100
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}+\frac{x-5}{95}=5\)
\(\Rightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)+\left(\frac{x-4}{96}-1\right)+\left(\frac{x-5}{95}-1\right)\)\(=5-1-1-1-1-1\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}+\frac{x-100}{95}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x=100
Chúc bạn học tốt
sửa đề đến đây thôi bạn nhé, do nếu thêm vào thì mình cũng ko biết có quy luật gì nữa :<
\(\dfrac{x-1}{99}-1+\dfrac{x-3}{97}-1+\dfrac{x-5}{95}-1=\dfrac{x-2}{98}-1+\dfrac{x-4}{96}-1\)
\(\Leftrightarrow\dfrac{x-100}{99}+\dfrac{x-100}{97}+\dfrac{x-100}{95}=\dfrac{x-100}{98}+\dfrac{x-100}{96}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{98}-\dfrac{1}{96}\ne0\right)=0\Leftrightarrow x=100\)
Pt\(\Leftrightarrow\dfrac{x+98}{2}+1+\dfrac{x+96}{4}+1+\dfrac{x+65}{35}+1=\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+49}{51}+1\)
\(\Leftrightarrow\dfrac{x+100}{2}+\dfrac{x+100}{4}+\dfrac{x+100}{35}-\dfrac{x+100}{97}-\dfrac{x+100}{95}-\dfrac{x+100}{51}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{35}-\dfrac{1}{97}-\dfrac{1}{35}-\dfrac{1}{51}\right)=0\)
\(\Leftrightarrow x+100=0\Leftrightarrow x=-100\)
Vậy...
Ta có:
\(\frac{x+1}{98}+1+\frac{x+2}{97}+1=\frac{x+3}{96}+1+\frac{x+4}{95}+1\)
\(\frac{x+1}{98}+\frac{98}{98}+\frac{x+2}{97}+\frac{97}{97}=\frac{x+3}{96}+\frac{96}{96}+\frac{x+4}{95}+\frac{95}{95}\)
\(\frac{x+99}{98}+\frac{x+99}{97}=\frac{x+99}{96}+\frac{x+99}{95}\)
\(\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
\(\left(x+99\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì: \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)nên x+99=0
=> x=-99
\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
\(\Rightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy...
(=)(x+2)/98+1+(x+3)/97+1=(x+4)/96+1+(x+5)/95+1
(=)(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95
(=)(x+100)(1/98+1/97-1/96-1/95)=0
=)x+100=0
=)x=-100