cho f(x)=x^3-ax^2-9x+b. Tìm a và b để đa thức có 2 nghiệm 1 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
Ta có: \(f\left(1\right)=1^3-a.1^2-9.1+b\)
\(=1-a-9+b\)
\(=-8-a+b\)
Mà \(f\left(1\right)=0\Rightarrow-8-a+b=0\left(1\right)\)
Ta có: \(f\left(3\right)=3^3-a.3^2-9.3+b\)
\(=27-9a-27+b\)
\(=-9a+b\)
Mà \(f\left(3\right)=0\Rightarrow-9a+b=0\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\)ta được :
\(\left(-8-a+b\right)-\left(-9a+b\right)=0\)
\(-8-a+b+9a-b=0\)
\(-8+8a=0\)
\(8a=8\)
\(a=1\)
Thay a =1 vào (1) ta được b= 9
Vậy a=1 và b=9
f(1) = 0 <=> 1^3 - a.1^2 - 9.1 + b = 0 <=> - a + b - 8 = 0 (1)
f(3) = 0 <=> 3^3 - a. 3^2 - 9.3 + b = 0 <=> - 9a + b = 0 (2)
(2) => b = 9a
Thay vào (1): - a + 9a - 8 = 0 => 8a - 8 = 0 => a = 1
=> b = 9a = 9