a) A=2/1+2 + 2+3/1+2+3 +.....+2+3+...+20/1+2+3+...+20
b) B=1.3.5.7....2017.2019/1011.1012....2020 - 1/21010
CÀNG NHANH CÀNG TỐT NHÉ !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ công thức:\(1+2+........+n=\frac{n.\left(n+1\right)}{2}\)
Cho \(n\in\)N*.CMR:\(\frac{1}{n}.\left(1+2+...+n\right)=\frac{n+1}{2}\)
Ta có:\(\frac{1}{n}.\left(1+2+......+n\right)=\frac{1}{n}.\frac{n\left(n+1\right)}{2}=\frac{n+1}{2}\)
Ta có:\(1+\frac{1}{2}\left(1+2\right)+......+\frac{1}{20}.\left(1+2+.....+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3.\left(3+1\right)}{2}+........+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=1+\frac{3}{2}+...............+\frac{21}{2}\)
\(=\frac{2+3+......+21}{2}\)
\(=\frac{230}{2}=165\)
Ta có: \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
\(\left(x+\frac{1}{2}\right)\times\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow x+\frac{1}{2}=0\)
\(x=0-\frac{1}{2}\)
\(x=-\frac{1}{2}\)
\(\Rightarrow\left(\frac{2}{3}-2x\right)=0\)
\(2x=\frac{2}{3}-0\)
\(2x=\frac{2}{3}\)
\(x=\frac{2}{3}\div2\)
\(x=\frac{1}{3}\)
Vạy tồn tại hai giá trị \(-\frac{1}{2}\) và \(\frac{1}{3}\)
gọi \(S=1+2+2^2+2^3+...+2^{2015}\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2S-S=S=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+2^{2016}-1=2^{2016}-1\)
\(2^{2016}-1⋮2^{2016}-1\Rightarrow2^{2016}-1+1=2^{2016}:2^{2016}-1\)dư 1
\(\Rightarrow2^{2016}+2^{2016}+2^{2016}+2^{2016}\)dư 1+1+1+1=4\(\Rightarrow4\cdot2^{2016}=2^2\cdot2^{2016}=2^{2018}:2^{2016}-1\)dư 4
\(\Rightarrow2^{2018}:S\)dư 4