cho tam giác ABC chứng minh: cos2A + cos2B + cos2C = -1 - 4cosA.cosB.cosC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos2A+cos2B+cos2C=2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC.cos\left(A-B\right)+2cos^2C-1\)
\(=-2cosC\left[cos\left(A-B\right)-cosC\right]-1\)
\(=-2cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]-1\)
\(=-4cosC.cosA.cosB-1\)
\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)
\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)
\(=-4sinC.sinA.sin\left(-B\right)=4sinA.sinB.sinC\)
\(cos2A+cos2B-cos2C\le\frac{3}{2}\)
\(\Leftrightarrow2cos\left(A+B\right).cos\left(A-B\right)-2cos^2C+1\le\frac{3}{2}\)
\(\Leftrightarrow-cos\left(C\right).cos\left(A-B\right)-cos^2C\le\frac{1}{4}\)
\(\Leftrightarrow4cos^2C+4cosC.cos\left(A-B\right)+1\ge0\)
\(\Leftrightarrow4cos^2C+4cosC.cos\left(A-B\right)+cos^2\left(A-B\right)+sin^2\left(A-B\right)\ge0\)
\(\Leftrightarrow\left(2cosC+cos\left(A-B\right)\right)^2+sin^2\left(A-B\right)\ge0\)(đúng)
Ta có ĐPCM