Ba nhà kinh doanh cùng góp vốn. Số vốn người thứ nhất bằng 2/3 số vốn người thứ hai, số vốn người thứ hai bằng 2/5 số vốn người thứ ba. Nếu số tiền lãi được chia theo cụ thể vốn và tổng số tiền lãi thu được là 500 000 000 đồng thì người có số tiền lãi cao nhất đã thu được bao nhiêu triệu đồng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi số lãi của người thứ nhất, người thứ 2 và người thứ 3 lần lượt là x,y và z. Ta có : x + y + z = 500 (*)
Số tiền lãi được chia theo tỉ lệ tiền vốn thì lức này ta có:
Số vốn người thứ nhất bằng 2/3 số vốn người thứ hai ⇔ x = 2y/3
Số vốn người thứ hai bằng 2/5 số vốn người thứ ba ⇔ y = 2z/5
=> y = 3x/2 và z = 15x/4
Thay y = 3x/2 và z = 15x/4 vào (*) ta được:
x + 3x/2 + 15x/4 = 500
=> x = 80
=> y = 120 và z = 300
Vậy người có số lãi cao nhất là người thứ 3 với số tiền lãi là 300 triệu
Gọi a,b,c là số tiền vốn của 3 người kinh doanh
Ta có: 3a = 2b và 4b = 3c
=> \(\frac{a}{2}\)=\(\frac{b}{3}\)và \(\frac{b}{3}\)=\(\frac{c}{4}\)
=> \(\frac{a}{2}\)=\(\frac{b}{3}\)=\(\frac{c}{4}\) và a+b+c = 180 triệu
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{a}{2}\)=\(\frac{b}{3}\)=\(\frac{c}{4}\)=\(\frac{a+b+c}{2+3+4}\)=180 triệu/ 9 = 20 triệu
\(\frac{a}{2}\)= 20 triệu => a = 40 triệu
\(\frac{b}{3}\)= 20 triệu => b = 60 triệu
\(\frac{c}{4}\)= 20 triệu => c = 80 triệu
Vậy số tiền vốn của 3 người kinh doanh lần lượt là 40 triệu đồng, 60 triệu đồng, 80 triệu đồng
Gọi a,b,c là số tiền vốn của 3 người kinh doanh
Ta có: 3a = 2b và 4b = 3c
=> =và =
=> == và a+b+c = 180 triệu
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có: ====180 triệu/ 9 = 20 triệu
= 20 triệu => a = 40 triệu
= 20 triệu => b = 60 triệu
= 20 triệu => c = 80 triệu
Vậy số tiền vốn của 3 người kinh doanh lần lượt là 40 triệu đồng, 60 triệu đồng, 80 triệu đồng