K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Sửa đề là với n >= 2 nhé!Mình cũng không chắc nx!Mình ngu dạng này lắm=(((

Với n = 2 thì \(VT=\frac{1}{5}+\frac{2}{13}+\frac{1}{25}< \frac{9}{20}\) (đúng)

Mệnh đề đúng với n = 2

Giả sử đúng với n = k (k>= 2)tức là \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\) (giả thiết qui nạp)

Ta chứng minh nó đúng với n = k + 1 tức là c/m \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{9}{20}\)

Ta có: VT = \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

15 tháng 4 2019

Ta có:\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)

        \(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

        \(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)

        \(=\frac{1}{5}.\left(1-\frac{1}{5n+6}\right)\)

        \(=\frac{1}{5}.\left(\frac{5n+5}{5n+6}\right)=\frac{n+1}{5n+6}\left(\text{đ}pcm\right)\)

27 tháng 11 2020

Ta có :

\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)

\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)

\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)

16 tháng 5 2020

a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1

=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)

Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)

\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)

Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)

Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)

..........................................

Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)

Cộng từng vế của 2 BĐT trên ta được

\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)

16 tháng 5 2020

Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)

18 tháng 2 2020

Đề thiếu. Vũ Trung Hiếu

18 tháng 2 2020

Nhỏ hơn \(\frac{9}{20}\)nhé xin lỗi .Bạn giải giúp mình với

23 tháng 1 2019

chứng minh bài toán theo cách quy nạp toán học.  

Với n=2 suy ra:\(\frac{1}{3}+\frac{1}{4}>\frac{13}{14}\left(TM\right)\)

Giả sử bài toán trên đúng với mọi n=k,ta cần chứng minh nó đúng với n=k+1,tức là:

\(S_k=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2\left(k+1\right)}>\frac{13}{14}\)

Thật vậy:

\(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{2\left(k+1\right)}\)

\(=\frac{1}{k+1}+\frac{1}{k+2}+....+\frac{1}{2k}+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)

\(=S_k+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)

\(>\frac{13}{14}+\frac{2k+2}{2\left(k+1\right)\left(2k+1\right)}+\frac{2k+1}{2\left(k+1\right)\left(2k+1\right)}-\frac{2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

\(=\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

23 tháng 1 2019

để dễ hiểu,,mik xin viết thêm nha(không phải để kiếm điểm,có người nhờ nên mới thế này:))

\(\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)

\(=\frac{13}{14}+\frac{1}{2\left(k+1\right)\left(2k+1\right)}>\frac{13}{14}\left(k>1\right)\)

\(\Rightarrow S_{k+1}>\frac{13}{14}\)

\(\Rightarrow S_k>\frac{13}{14}\)

Phép chứng minh hoàn tất_._