Tìm giá trị của biểu thức \(P=\frac{2}{1.3}-\frac{4}{3.5}+\frac{6}{5.7}+\frac{8}{7.9}+...-\frac{96}{95.97}+\frac{98}{97.99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)
S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\frac{98}{99}\)
S=\(\frac{49}{99}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
Tự tính
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được:
\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)
=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)
\(4A>1=>A>\frac{1}{4}\)
B2 : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{114}+\frac{1}{196}+\frac{1}{256}+\frac{1}{324}\)
\(=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{4^2}< \frac{1}{2\cdot4}\)
\(\frac{1}{6^2}< \frac{1}{4\cdot6}\)
...
\(\frac{1}{18}< \frac{1}{16\cdot18}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{18^2}< \frac{1}{2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{18}\right)\)
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
= \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
= \(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{29}{45}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA