So sánh hai phân số: a-1/a và b+1/b( a,b là số nguyên cùng dấu và a,b khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1
b+1/b = b/b + 1/b = 1 + 1/b > 1
=> a-1/a < 1 < b+1/b
Vậỵ a-1/a < b+1/b
1. a thuộ̣c (+-5, +-6, +-7, +-8,..)
2. |a|<|b|
Cách 1: So sánh với 1
Ta thấy: \(\frac{a-1}{a}< 1\)
\(\frac{b+1}{b}>1\)
\(\Rightarrow\frac{a-1}{a}< 1< \frac{b+1}{b}\Rightarrow\frac{a-1}{a}< \frac{b+1}{b}\)
Cách 2: Quy đồng hai phân số \(\frac{a-1}{a}\) và \(\frac{b+1}{b}\)
\(\frac{a-1}{a}=\frac{b\left(a-1\right)}{b\cdot a}=\frac{ba-b}{ba}\)
\(\frac{b+1}{b}=\frac{a\left(b+1\right)}{a\cdot b}=\frac{ab+b}{ab}\)
Vì \(ba-b< ab+b\Rightarrow\frac{ba-b}{ba}< \frac{ab+b}{ab}\)
\(\Rightarrow\frac{a-1}{a}< \frac{b+1}{b}\)
+)Ta có a<b
\(\Rightarrow\left|a\right|< \left|b\right|\)
Chúc bn học tốt
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.
Ta có : a-1/a = a/a - 1/a = 1 - 1/a < 1
b+1/b = b/b + 1/b = 1 + 1/b >1
=> a-1/a < 1 < b+1/b
=> a-1/a < b+1/b
k mình nha
dung rui