Cho hình vuông ABCD, E là một điểm trên BC. Qua E kẻ tia Ax vuông góc với AE, Ax cắt CD tại F. Truyen tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI tại G.
a) Chứng minh: AE = AF và tứ giác EGKF là hình thoi
b) Chứng minh: Tam giác AKF đồng dạng với tam giác CAF và AF^2 = FK.FC
c) Khi E thay đổi trên BC. Chứng minh EK = BE + DK và chu vi tam giác EKC không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
góc FAD+DAE=90•
DAE+EAB=90•
-> FAD=EAB
xet tam giác AEB và tam giác ADF có
AB=AD( ABCD là hình vuông)
ABE=ADF=90•
FAD=EAB
suy ra tam giac ABE=tam giác ADF(g.c.g)
-> AF=AE
a) Xét \(\Delta\)ABE và \(\Delta\)ADF: AB=AD; ^ABE=^ADF=900; ^BAE=^DAF (Cùng phụ với ^DAE)
=> \(\Delta\)ABE=\(\Delta\)ADF (g.c.g) => AE=AF (2 cạnh tương ứng)
=> \(\Delta\)AEF vuông cân tại A (Do ^EAF=900)
=> Trung tuyến AI của \(\Delta\)AEF đồng thòi là đường trung trực của EF
Ta thấy 2 điểm K và G nằm trên AI nên GE=GF; KE=KF (1)
Lại có: GE//AB hay GE//CD => ^GEF=^KFE. Mà ^KFE=^KEF (Do tam giác EKF cân tại K)
=> ^GEF=^KEF => EF hay EI là đường phân giác ^GEK
Xét \(\Delta\)EGK: EI\(\perp\)GK; EI là phân giác ^GEK => \(\Delta\)EGK cân tại E => EG=EK (2)
Từ (1) và (2) => GE=GF=KE=KF => Tứ giác EKFG là hình thoi (đpcm).
b) Ta có: EF\(\perp\)AK tại I (Dễ chứng minh) => \(\Delta\)FIK ~ \(\Delta\)FCE (g.g)
=> \(\frac{FI}{FC}=\frac{FK}{FE}\)=> FK.FC = FI.FE
Vì tam giác AEF vuông tân tại A và có đường trung tuyến AI => AI=FI
=> FK.FC=AI.EF (đpcm).
c) CECK= CE+CK+EK = CE+CK+FK (Do EK=FK) = CK+CE+DK+DF
Ta có: \(\Delta\)ABE = \(\Delta\)ADF (cmt) => BE=DF => CECK=CK+CE+DK+BE=CD+BC
Mà CD và BC không đổi => CECK không đổi khi E thay đổi trên BC (đpcm).
Bài làm
Ta có Qua E kẻ đường thẳng với AB cắt AD tại H.
a)Ta có DAEˆ+FADˆ=90o
Xét trong tam giác vuông tại H(do EH//AB=>HE vuông góc với AD)
Có DAEˆ=AEHˆ=90o
=>AEHˆ=FADˆ.
Xét tam giác HAE và tam giác DFA có:
HE=AD(do HE=AB(c/m dễ dàng))
ADFˆ=EHAˆ=90o
AEHˆ=FADˆ(c/m trên)
=>Tam giác HAE=Tam giác DFA(cạnh huyền-góc nhọn)
=>AE=FA.
Ta có AE=FA=>Tam giác AFE vuông cân tại A
=>AI vừa là trung tuyến cũng vừa là đường vuông góc! xuất phát từ đỉnh.
Từ đây =>FE vuông góc với GK kết hợp với IF=IE,AE//DC(do AB//DC)
Dễ dàng chứng mình được AEKF là hình thoi.
b)Xem lại đề nhé AEF không thể đồng dạng với CAF do CFAˆ=AFEˆ+EFCˆ.
Ta có AC là đường chéo nên cũng là Phân giác của góc đó luôn.
Nên ta có DAKˆ+KACˆ=45o
Ta cũng có AK là phân giác trong tam giác vuông cân tại đỉnh A.
=>KACˆ+CAEˆ=45o
=>CAEˆ=DAKˆ.
Ta xét trong tam giác vuông ADK tại D.
Có AKDˆ+DAKˆ=90o
MÀ FACˆ+EACˆ=90o
hay FACˆ+DAKˆ=90o
=>FACˆ=AKDˆ
Xét hai tam giác AFK và tam giác CFA có:
AFCˆ chung
FACˆ=AKDˆ(c/m trên)
=>Tam giác AFK đồng dạng với tam giác CFA
=>AFFK=CFAF
=>AF2=CF.FK
tốp scorer ơi,mình không hiểu phần kẻ thêm ở đàucủa bạn, bạn có hình ko
KO HIỂU '-'
no biết