K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

20 tháng 2 2018

a, Ta có BD//AC ( cùng vuông với AB )

BD=AC ( gt về các tam giác cân )

=> DBCA là hình bình hành => AD //BC (1)

Tương tự chứng minh BAEC là hình bình hành => AE//BC (2)

=> A,D,E thẳng hàng theo tiên đề ơ cơ lít :D 

20 tháng 2 2018

câu b câu c nữa đâu bạn

21 tháng 7 2020

a) chứng minh tam giác ABI = tam giác BEC

23 tháng 7 2020

a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)

Xét \(\Delta\)ABI và \(\Delta\)BEC có :

AI = BC(gt)

\(\widehat{IAB}=\widehat{EBC}\)(cmt)

AB = BE(tam giác ABE vuông cân tại B)

=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)

b) \(\Delta\)ABI  = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)

\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)

Gọi giao điểm của CE với AB là M

Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)

Do đó \(CE\perp BI\)

Gọi giao điểm của BF và AC là N

Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)

=> BF vuông góc với CI

c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy

–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M