Chứng minh rằng trong 27 số nguyên khác nhau tùy ý nhỏ hơn 100 có thể chọn được hai số có ước chung lớn nhất khác 1
3 like cho câu trả lời nhanh và chính xác nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong các số dưới 100, ta có 25 số nguyên tố
mà ở đây ta có 26 số.
=> Số số dôi ra là:
26-25=1
Theo nguyên lí Diricle=> có thể chọn được ít nhất hai số có ước chung lớn nhất khác 1=> điều phải chứng minh
Phân hoạch \(100\) số tự nhiên đầu tiên thành các tập hợp sau:
\(A_1=\left\{1\right\}\)
\(A_2=\left\{2;4;6;8;...;100\right\}\)
\(A_3=\left\{3;9;15;...;99\right\}\)
\(A_5=\left\{5;25;35;55;...;95\right\}\)
Nghĩa là \(A_i\) với \(i\) nguyên tố chứa các bội của \(i\) mà không chia hết cho số nào nhỏ hơn \(i\) trừ số \(1\).
Giả sử có 27 số mà trong chúng không có ước chung lớn nhất khác 1.
Với mọi \(i\), trong mỗi \(A_i\) ta chỉ chọn được tối đa một số, vì nếu chọn 2 số thì chúng có ước chung là \(i\).
Có 25 số nguyên tố nhỏ hơn 100, tương ứng trong 25 \(A_i\) chỉ chọn được 25 số là tối đa.
Chọn thêm số 1 thì tối đa chọn được 26 số sao cho không có ước chung lớn nhất khác 1.
Nên nếu chọn 27 số thì trong chúng có ước chung lớn nhất khác 1.
Câu 2. Chọn câu trả lời sai:
A. Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
B. Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ước.
C. Số nguyên tố nhỏ nhất là số 2.
D. Số nguyên tố nhỏ nhất là số 1.