Tìm số tự nhiên n để phân số A=\(\frac{21n+3}{6n+4}\)có giá trị là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN
\(\Rightarrow n+10⋮2n-8\)
\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)
\(\Rightarrow n+10⋮n-4\)
\(\Rightarrow\left(n-4\right)+14⋮n-4\)
\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)
a, Để 6n+99 là STN , suy ra :
Suy ra : 6n+99 chia hết cho 3n + 4
6n+99 - (3n+4)_________ 3n+4
6n+99 - (6n+8)_________ 3n+4
6n+99-6n-8__________ 3n+4
(6n-6n) -99-8__________ 3n+4
Suy ra : 91 chia hết cho 3n+4
Suy ra : 3n+4 thuộc Ư(91)
Suy ra : 3n+4 =(1;13 ;7;91)
Suy ra : 3n= [ (-3) ;3 ; 10 ; 87 ]
Suy ra : n = [ 1 ; 29 ] [ Vì 10 ko chia hết cho 3, (-3) ko nguyên dương ]
b, Để p/s 6n+99/3n+4 tối giản thì suy ra : 6n+99 ko chia hết cho 3n+4
Suy ra : 3n+4 ko thuộc Ư(91)
Suy ra : n ko có giá trị 1 ; 29
Suy ra : n thuộc N* , n khác 1 và 29
( Mình học THCS chuyên Hùng Vương , Phú thọ )
Để \(A\in Z\Leftrightarrow n+3⋮2n-2\)
\(\Leftrightarrow2n+6⋮2n-2\)
\(\Leftrightarrow2n-2+8⋮2n-2\)
Mà \(2n-2⋮2n-2\)
\(\Rightarrow8⋮2n-2\)
\(\Rightarrow2n-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng rùi tìm n nguyên
Lê Tài Bảo Châu từ dòng thứ 2 không thể dùng dấu tương đương được, vì điều ngược lại chưa chắc đã đúng, với lại tìm n nguyên xong phải thử lại lọc ra các giá trị thỏa mãn.
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |