K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

nhỏ hơn hoặc bằng x nhé . Sory mình quên là tìm x đó

31 tháng 3 2017

\(=\frac{16}{3}x\frac{30}{7}=\frac{480}{21}=\frac{160}{7}\)

\(\frac{33}{5}:\frac{21}{4}=\frac{33}{5}x\frac{4}{21}=\frac{132}{105}=\frac{44}{35}\)

31 tháng 3 2017

a) \(5\frac{1}{3}.4\frac{2}{7}=\frac{16}{3}.\frac{30}{7}=\frac{160}{7}\)

b) \(6\frac{3}{5}:5\frac{1}{4}=\frac{33}{5}:\frac{21}{4}=\frac{33}{5}.\frac{4}{21}=\frac{44}{35}\)

20 tháng 2 2020

a) =-5/7 +7/8-2/7+1/8- -1/12+ -13/12

=(-5/7-2/7)+(7/8+1/8)-(-1/12--13/12)

=-7/7+8/8 - 12/12

= -1+1+1

=1

b)= ( -3/8+11/8)-(12/11+ -1/11)+(-3/5- 2/5)

= 1- 1 + (-1)

=-1

20 tháng 2 2020

dễ lắm ó

25 tháng 8 2018

Bài 1:

\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)

\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)

Bài 2:

\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)

<=>  \(\frac{7}{8}-x=\frac{27}{40}\)

<=>  \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)

Vậy...

25 tháng 8 2018

bài 2 mình tính sai, sửa

.......

<=>  \(\frac{7}{8}-x=\frac{37}{40}\)

<=>  \(x=\frac{7}{8}-\frac{37}{40}=\frac{-1}{20}\)

Vậy....

9 tháng 7 2021

Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)

=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)

=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)

=> 48S = \(1-\frac{1}{7^{100}}\)

=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)

Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)

30 tháng 6 2017

\(=\frac{-263}{8085}\)

30 tháng 6 2017

BN ƠI = \(-\frac{263}{8085}\)NHA Nguyễn Hiền Anh!

11 tháng 10 2018

ta có:4/5:(4/5*5/4)/16/25-1/25+(27/25-2/25):4/7/(59/9-13/4)*36/17+6/5*1/2

       =4/5:3/5+7/4:7+3/5

        =4/3+1/4+3/5

         =3/2+3/5=21/10

Ta có :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(..............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)

Lại có :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(...............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)

Từ (1) và (2) => Điều phải chứng minh