K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

a) AC là phân giác của ^DAx (gt) mà ^BAC = 900 (gt) nên AB là phân giác ngoài tại đỉnh A của \(\Delta\)ADE

Kết hợp với DB là phân giác trong tại đỉnh D của \(\Delta\)ADE

=> BE là phân giác của ^AEy

Mà EO là phân giác của ^AED (3 đường phân giác trong của \(\Delta\)AED đồng quy tại 1 điểm )

=> ^BEO = 900 (hai đường phân giác của hai góc kề bù)

Vậy OE \(\perp\)BE (đpcm)

b) Chứng minh tương tự câu a, ta được OE \(\perp\)EC 

Từ đó suy ra \(BE\equiv CE\)

Vậy B,E,C thẳng hàng (đpcm)

27 tháng 8 2017

Dễ z sao đăng bn ơi

D

27 tháng 8 2017

mk............................không biết làm bye bye bn 

10 tháng 2 2016

vẽ hình rồi ra ngay

tich ủng hộ nhé

10 tháng 2 2016

Mình cần 1 điểm nữa

1 tháng 9 2021

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)