K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

toán lp 8 mà đem ch hs lp 7 lm

17 tháng 4 2019

Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath

Đã là bồi dưỡng HSG thì em phải chấp nhận làm các bài khó. Cố lên! Em có thể tham khảo thêm :)))

13 tháng 12 2020

Ta có: \(\left(a^{100}+b^{100}\right)\cdot ab=a^{101}\cdot b+b^{101}\cdot a\)

\(\left(a^{101}+b^{101}\right)\cdot\left(a+b\right)=a^{102}+a^{101}\cdot b+b^{101}\cdot a+b^{102}\)

Do đó: \(\left(a^{101}+b^{101}\right)\left(a+b\right)-\left(a^{100}+b^{100}\right)\cdot ab\)

\(=a^{102}+b\cdot a^{101}+a\cdot b^{101}+b^{102}-a^{101}\cdot b-b^{101}\cdot a\)

\(=a^{102}+b^{102}\)

Kết hợp đề bài, ta có: 

\(\left(a^{102}+b^{102}\right)\left(a+b\right)-\left(a^{102}+b^{102}\right)\cdot ab=a^{102}+b^{102}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)+b\left(1-a\right)=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Vậy: \(P=a^{2004}+b^{2004}=1^{2004}+1^{2004}=2\)

7 tháng 4 2018

ko hiểu

8 tháng 4 2018

đấy là số mũ đó bn

NV
18 tháng 8 2021

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)

\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)

\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow\left(a-b\right)^2=0\)

\(\Rightarrow a=b\)

Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)

\(\Rightarrow2a^{100}\left(a-1\right)=0\)

\(\Rightarrow a=1\Rightarrow b=1\)

\(\Rightarrow...\)

18 tháng 8 2021

em cảm ơn thầy ạ

dòng thứ 2 bạn phải đóng ngoặc chứ

sửa lại:

=a1000+b100+a10+b-(b1000+a100+b10+a)

5 tháng 11 2019

Cảm ơn bạn nhé vậy là mình làm sai rùi.

21 tháng 1 2018

a.

Theo đề bài ta có:

-1 - 1 - ... - 1 + a101 = 0

=> - 50 + a101 = 0=> a101 = 50

b,

-2017 < |a+4| ≤ 2

=> 0 ≤ |a+4| ≤ 2

=> -2 ≤ a+4 ≤ 2

=> -6 ≤ a ≤ -2

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?

 

6 tháng 3 2017

Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?