K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

\(2\left(x-\frac{1}{2}\right)+3\left(-1+\frac{x}{3}\right)=x\left(\frac{2}{x}-1\right)\)

\(\Leftrightarrow2x-1-3+x=2-x\)

\(\Leftrightarrow\left(2x+x\right)-\left(1+3\right)=2-x\)

\(\Leftrightarrow3x-4=2-x\)

\(\Leftrightarrow3x+x=2+4\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\frac{6}{4}=\frac{3}{2}\)

18 tháng 4 2019

Ta có:  \(2\left(x-\frac{1}{2}\right)+3\left(-1+\frac{x}{3}\right)=x\left(\frac{2}{x}-1\right)\)

           \(2x-1+-3+\frac{3x}{3}=\frac{2x}{x}-x\)

           \(2x-1+-3+x=2-x\)

           \(\left(2x+x\right)+\left(-3\right)-1=2-x\)

           \(3x+\left(-4\right)=2-x\)

           \(3x+x=2-\left(-4\right)\)  

           \(4x=6\)

           \(x=6:4\)

           \(x=\frac{6}{4}=\frac{3}{2}\)

18 tháng 4 2019

mik nha

14 tháng 6 2023

a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)

b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)

\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)

c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)

\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)

\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)

\(\Rightarrow x=-2\)

14 tháng 6 2023

d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)

\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)

\(\Rightarrow x=\dfrac{25}{9}\)

e) \(\dfrac{1}{2}x+650\%x-x=-6\)

\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)

\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)

\(\Rightarrow6x=-6\)

\(\Rightarrow x=\dfrac{-6}{6}=-1\)

g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)

\(\Rightarrow2x-1-3+x=2-x\)

\(\Rightarrow3x-4=2-x\)

\(\Rightarrow3x+x=2+4\)

\(\Rightarrow4x=6\)

\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

tích mình đi

ai tích mình 

mình tích lại 

thanks

29 tháng 3 2020

Từ giải thiết, ta suy ra được những điều sau :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)

\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)      (1)

Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\) 

\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)

\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)

\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)

\(=x^2y^2+\left(x+y\right)^2+2\)

\(=x^2y^2+3\)   (2)

Từ (1) và (2) suy ra :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=0\)(ĐPCM)

7 tháng 4 2020

Biến đổi

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(do x+y=1 => y-1=-x và x-1=-y)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

=> ĐPCM

17 tháng 6 2016

Trả lời nhanh nha các bn, mik đang cần gấp, cảm ơn nhiều.

17 tháng 6 2016

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau: 

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\)  \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\)  \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó,  trừ đẳng thức  \(\left(1\right)\)  cho  đẳng thức  \(\left(2\right)\)  vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy,  \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

20 tháng 5 2022

TKS bạn

 

Đặt \(\sqrt{x+1}=a\)

=>\(A=\dfrac{3a+2}{a-2}\cdot\dfrac{1}{a}=\dfrac{3a+2}{a\left(a-2\right)}\)

\(=\dfrac{3\sqrt{x+1}+2}{x+1-2\sqrt{x+1}}\)