cho hình vuông ABCD. điểm M thuộc cạnh AB,N thuộc cạnh CD, sao cho góc MBN=45 độ. gọi giao điểm cuarBM,BN với AC theo thứ tự là E và F. CMR:
a, BCNE nội tiếp
b, tam giác BFM là tam giác gì ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
$M\in AC$ thì $BM$ cắt $AC$ tại $M$ luôn rồi bạn chứ sao là điểm E được?
Bạn xem lại đề.
giả hộ mình cái