chứng tỏ rằng:BCNN(2n + 5,3n + 7) = (2n + 5).(3n + 7)
BCNN(2n + 1,3n + 2) = (2n + 1).(3n + 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(ƯC\left(2n+1;3n+2\right)=d\left(d\in N\right)\)
\(2n+1⋮d,3n+2⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n-3⋮d\)
\(1⋮d\).Do đó d = 1
Vậy 2n + 1 và 3n + 2 là 2 số nguyên tố cùng nhau nên \(BCNN\left(2n+1;3n+2\right)=\left(2n+1\right)\left(3n+2\right)\)
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
a: Gọi d=UCLN(2n+1;2n+3)
\(\Leftrightarrow2n+3-2n-1⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>(2n+1;2n+3)=1
b: Gọi a=UCLN(2n+7;n+3)
\(\Leftrightarrow2n+7-2n-6⋮a\)
=>a=1
=>UCLN(2n+7;n+3)=1