K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2019

Gọi \(d:\) \(y=ax+b\Rightarrow1=a.+b\Rightarrow b=1-a\Rightarrow y=ax+1-a\) (a<0)

\(\Rightarrow A\left(\frac{a-1}{a};0\right)\); \(B\left(0;1-a\right)\)

Khi quay OAB quanh Oy sẽ thu được khối nón tròn xoay có bán kính đáy \(R=\left|y_B\right|=\left|1-a\right|=1-a\), chiều cao \(h=\left|x_A\right|=\left|\frac{a-1}{a}\right|=\frac{a-1}{a}\)

Thể tích nón: \(V=\frac{1}{3}\pi R^2h=\frac{1}{3}\pi\left(1-a\right)^2.\frac{\left(a-1\right)}{a}=\frac{\pi\left(a-1\right)^3}{3a}\)

Xét hàm \(f\left(a\right)=\frac{\left(a-1\right)^3}{a}\Rightarrow f'\left(a\right)=\frac{2a^3-3a^2+1}{a^2}=\frac{\left(2a+1\right)\left(a-1\right)^2}{a^2}\) (\(a< 0\))

\(f\left(a\right)\) đạt cực tiểu tại \(a=-\frac{1}{2}\Rightarrow V_{min}=V\left(\frac{1}{2}\right)=\frac{9\pi}{4}\)

31 tháng 8 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Như - Toán lớp 8 - Học toán với OnlineMath

16 tháng 9 2016


Triangle poly1: Polygon A, B, C Segment c: Segment [A, B] of Triangle poly1 Segment a: Segment [B, C] of Triangle poly1 Segment b: Segment [C, A] of Triangle poly1 Segment j: Segment [A, G] Segment k: Segment [B, H] Segment l: Segment [I, C] Segment n: Segment [H, G] Segment q: Segment [O, I] Segment r: Segment [O, G] Segment f_1: Segment [A, D] Segment g_1: Segment [O, K] Segment m: Segment [A, H] Segment p: Segment [B, G] Segment s: Segment [E, D] Segment h_1: Segment [H, O] A = (6.37, 4.19) A = (6.37, 4.19) A = (6.37, 4.19) B = (3.15, -2.53) B = (3.15, -2.53) B = (3.15, -2.53) C = (15.4, -3.36) C = (15.4, -3.36) C = (15.4, -3.36) Point F: Midpoint of c Point F: Midpoint of c Point F: Midpoint of c Point D: Midpoint of a Point D: Midpoint of a Point D: Midpoint of a Point E: Midpoint of b Point E: Midpoint of b Point E: Midpoint of b O = (10.6, -2.67) O = (10.6, -2.67) O = (10.6, -2.67) Point I: Intersection point of f, i Point I: Intersection point of f, i Point I: Intersection point of f, i Point G: Intersection point of d, g Point G: Intersection point of d, g Point G: Intersection point of d, g Point H: Intersection point of e, h Point H: Intersection point of e, h Point H: Intersection point of e, h Point K: Intersection point of j, k Point K: Intersection point of j, k Point K: Intersection point of j, k Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1

a) DE là đường trung bình tam giác ABC=>DE//AB và DE=\(\frac{1}{2}\)AB

DE là đường trung bình tam giác OGH=>DE//GH và DE=\(\frac{1}{2}\)GH

=> AB//GH và AB=GH => AHGB là hình bình hành => AG và BH cắt nhau tại trung điểm mỗi đường 

CM tương tự: AIGC là hình bình bình hành => AG,IC cắt nhau tại trung điểm mỗi đường 

                     IBCH là hình bình hành => IC,BH cắt nhau tại trung điểm mỗi đường

=> AG,BH,CI đồng quy.

b) K trung điểm AG => OK là trung tuyến tam giác AGO

Mà AD là trung tuyến tam giác AGO ( DG=DO do đối xứng tâm )

=> Giao điểm J của hai đường là trọng tâm tam giác AGO

=> JD =\(\frac{1}{3}\)AD

Mà AD là trung tuyến tam giác ABC

=> J là trọng tâm tam giác ABC

Vậy OK luôn đi qua điểm cố định là trọng tâm tam giác ABC.

16 tháng 9 2016

Lỡ vẽ hình bự quá rồi dán lên nhìn xấu ghê.

29 tháng 6 2017

Đáp án là A 

a: Xét tứ giác ADME có

ME//AD

MD//AE

Do đó: ADME là hình bình hành

b: Ta có: ADME là hình bình hành

nên Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của AM

nên I là trung điểm của DE

hay D,I,E thẳng hàng

27 tháng 2 2017

Chọn B.

9 tháng 5 2016

a) cm tứ giác CHOD nội tiếp, rồi sẽ cm đc HK là phân giác của tam giác HAC, suy ra đpcm

b) Gọi N là giao điểm của AB và OI, cm OI.ON = OH.OM = R2 => ON = R2/OI mà d cố định nên OI không đổi

16 tháng 3 2016

OA sao là phân giác góc BIC dc