tìm số nguyên x để phân số sau có giá trị lớn nhất A=2x-1/x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
a)
\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)
Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên
Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}
x-2 | -7 | -1 | 1 | 7 |
x | -5 | 1 | 2 | 9 |
Vậy x ∈ {-5; 1; 2; 9}.
\(A=\frac{2x+3}{2x+1}=\frac{2x+1+2}{2x+1}=1+\frac{2}{2x+1}\)
để A đạt gtln thì \(\frac{2}{2x+1}\) lớn nhất
=> 2x + 1 là số nguyên dương nhỏ nhất
=> 2x + 1 = 1
=> 2x = 0
=> x = 0
vậy x = 0 và \(MAX_A=\frac{2\cdot0+3}{2\cdot0+1}=3\)
a)để A là phân số => x khác 1/2
b) Để A\(\in\)Z
=> \(2x+5⋮2x-1\)
ta có : 2x-1\(⋮\)2x-1
=>(2x+5)-(2x-1)\(⋮\)2x-1
=>6\(⋮\)2x-1
=> 2x-1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | \(\frac{3}{2}\) | \(\frac{-1}{2}\) | 2 | -1 | \(\frac{7}{2}\) | \(-\frac{5}{2}\) |
Mà A \(\in\)Z
Vậy x\(\in\){\(\pm\)1;0;2}
c) ta có :A= \(\frac{2x-5}{2x-1}=\frac{2x-1-4}{2x-1}=\frac{2x-1}{2x-1}-\frac{4}{2x-1}=1-\frac{4}{2x-1}\)
để A lớn nhất
=>\(1-\frac{4}{2x-1}\)lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
\(A=\frac{2x-1}{x-3}=\frac{2\left(x-3\right)+5}{x-3}=2+\frac{5}{x-3}\)
Để Amax thì \(\frac{5}{x-3}\) đạt GTLN
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=1+3\)
\(\Leftrightarrow x=4\)
Vậy Amax\(\Leftrightarrow x=4\)