K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.

1: Xét ΔABE có 

BO là đường cao

BO là đường phân giác

Do đó: ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

2: Xét ΔEBD và ΔABD có 

BA=BE

\(\widehat{EBD}=\widehat{ABD}\)

BD chung

Do đó: ΔEBD=ΔABD

Suy ra: DE=DA

hay ΔDEA cân tại D(1)

\(\widehat{CEA}=180^0-60^0=120^0\)

\(\widehat{C}=180^0-105^0-60^0=15^0\)

=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)

Từ (1) và (2) suy ra ΔDEA vuông cân tại D

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
12 tháng 5 2022

Tham khảo:

undefined

12 tháng 5 2022

refer

undefined

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

27 tháng 3 2020

Bạn tự vẽ hình nha.

a,Xét tg ABE và tg HBE:

^BAE=^BHE=90*

^ABE=^HBE(BE là pg)

BE chung

=>tg ABE= tg HBE(ch-gn)

b,+,tg ABC có:^BAC=90*,^ABC=60*

=>^C=30*

+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)

=>^HEB=60*

Mà HK // BE

=>^HBE=^EHK=60*(slt)

+, tg CHE có:^EHC=90*,^C=30*

=>HEC=60*

+,tg HEK có:

^EHK=60*,^HEC(^HEK)=60*

=>TG HEK đều(dhnb)

Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.

c, +,CM:tg AEM=tg HEC(cgv-gnk)

=>AM=HC

+,CM:BM=BC

+,CM:tg BMI=tgBCI(cgc)

=>NM=NC

Xong r nha. Chúc bạn học tốt.

9 tháng 5 2022

bn ơi đúng câu khó mik ko bik lại nói thế

9 tháng 5 2022

a)  Xét ∆ABD và ∆EBD ta có :

BD chung

góc BAD = góc BED ( = 90 độ)

góc ABD = góc EBD ( gt)

=> ∆ABD=∆EBD  ( ch-gn)

b) Xét tam giác vuông ABC ta có :

Góc A = 90 độ, góc C = 30 độ

Mà góc A + góc C + góc B = 180 độ

=> góc B = 180 - 90 - 30 = 60 độ (1)

Xét tam giác ABE ta có :

BA = BE ( vì  ∆ABD=∆EBD) => tam giác ABE cân tại B

Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )

 

a)  Xét `∆ABD` và `∆EBD` ta có :

`BD` chung

`hat (BAD) = hat (BED) ( = 90^o)`

`hat(ABD) = hat (EBD)`

`=> ∆ABD=∆EBD  ( ch-gn)`

b) Xét tam giác vuông `ABC` ta có :

`Hat A = 90 độ, hatC = 30 độ`

Mà `hat (A) + hat (C) + hat (B) = 180^o`

`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`

Xét tam giác ABE ta có :

`BA = BE ( vì  ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B

Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều