cho tam giác abc có góc B bằng 70 độ góc C bằng 50 độ trên cạnh ab lấy d sao cho acd bằng 20 chúng minh ac+ad=bc+cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Trong tam giac ABC lay diem M sao cho tam giac BMC deu
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuoc trung truc cua BC
Do đó : AM la trung truc cua BC
=> AM la phan giac goc BAC
=> goc MAB = goc MAC = goc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
Bài giải của thầy Xuân Minh (Cam Ranh)
Trên cạnh BC lấy D' sao cho ∆AD'C cân,kẻ D'H vuông góc AC ,D'K vuông góc AB ,có ∆AKD'=∆D'HA=>KD'=HA=1/2AC,,lại có KD'=1/2BD' nên BD'=AC=BD=> D' trùng D=>đpcm
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ