K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2019

Câu 1:

\(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)

Ta có: \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{-1}{\sqrt{1+tan^2a}}=-\frac{3}{5}\)

\(\Rightarrow sina=cosa.tana=\frac{4}{5}\)

\(\Rightarrow P=\frac{\frac{16}{25}+\frac{3}{5}}{\frac{4}{5}-\frac{9}{25}}=\frac{31}{11}\)

Câu 2:

\(P=sin^4a-cos^4a=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a\)

\(P=1-cos^2a-cos^2a=1-2cos^2a\)

Theo cmt ta có \(cos^2a=\frac{1}{1+tan^2a}\Rightarrow P=1-\frac{2}{1+tan^2a}=\frac{12}{13}\)

18 tháng 5 2016

cotα = \(\frac{1}{3}\) \(\Leftrightarrow\frac{cos\alpha}{\sin\alpha}=\frac{1}{3}\Leftrightarrow\sin\alpha=3\cos\alpha\) 

cotα =\(\frac{1}{\tan\alpha}=\frac{1}{3}\Rightarrow\tan\alpha=3\)

T = \(\frac{2016}{\sin^2\alpha-\sin\alpha\cos\alpha-\cos^2\alpha}=\frac{2016}{9\cos^2\alpha-3\cos^2\alpha-\cos^2\alpha}\) \(=\frac{2016}{5\cos^2\alpha}=\frac{2016}{5}\times\frac{1}{\cos^2\alpha}=\frac{2016}{5}\times\left(1+\tan^2\alpha\right)\) \(=\frac{2016}{5}\left(1+9\right)=4032\)

19 tháng 5 2016

cảm ơn bạn nhiều nha ok

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-