Cho a, b, x, y, z là 5 số tự nhiên khác 0 thỏa mãn: \(a^2+b^2=x^2+y^2+z^2\)
Chứng minh: Tổng \(S=a+b+x+y+z\) là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,x,y,z là các số tự nhiên khác 0.
=>a,b,x,y,z >=1
=>S=a+b+x+y+z >=1+1+1+1+1=5
=>S >=5>2
=>S>2
Ta có: a^2+b^2=x^2+y^2+z^2
=>a^2+b^2+a^2+b^2=a^2+b^2+x^2+y^2+z^2
=> 2.(a^2+b^2)=a^2+b^2+x^2+y^2+z^2
Lại có:
S= a+b+x+y+z
=> S^2=(a+b+x+y+z).(a+b+x+y+z)
=> S^2=a.(a+b+x+y+z)+b.(a+b+x+y+z)+x.(a+b+x+y+z)+y.(a+b+x+y+z)+
z.(a+b+x+y+z)
=> S^2=a^2+a.b+a.x+a.y+a.z+b.a+b^2+b.x+b.y+b.z+x.a+x.b+x^2+x.y+x.z+y.a+
y.b+y.x+y^2+y.z+z.a+z.b+z.x+z.y+z^2
=> S^2=(a^2+b^2+x^2+y^2+z^2)+(a.b+b.a)+(a.x+x.a)+(a.y+y.a)+(a.z+z.a)+
(b.x+x.b)+(b.y+y.b)+(b.z+z.b)+ (x.y+y.x)+(x.z+z.x)+(y.z+z.y)
=> S^2=2.(a^2+b^2)+2.a.b+2.a.x+2.a.y+2.a.z+2.b.x+2.b.y+2.b.z+2.x.y+2.x.z+2.y.z
=> S^2=2.(a^2+b^2+a.b+a.x+a.y+a.z+b.x+b.y+b.z+x.y+x.z+y.z)
=> S^2 chia hết cho 2.
Giả sử S là số nguyên tố mà S>2.
=>S không chia hết cho 2.
=>S^2 không chia hết cho 2.
=>Vô lí.
=>S không phải là số nguyên tố.
Vậy S không phải là số nguyên tố.
a, b, x, y, z = 1
1\(^2\)+ 1\(^2\)= 1\(^2\)+ 1\(^2\)+ 1\(^2\)
Vì 1 + 1 + 1 + 1 + 1 = 5 là số nguyên tố nên a + b + x + y + z là số nguyên tố.
Vậy, a + b + x + y + z là số nguyên tố
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)
\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)