Cho ΔABC vuông tại A, có AB = 8cm, AC = 6cm. Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ đường thẳng vuông góc với BC, đường thẳng này cắt AC tại E
a) Tính độ dài canh BC?
b) Chứng minh ΔABE = ΔDBE
c) Gọi F là giao điểm của tia DE và tia BA. So sánh BF và BC
d) Chứng minh BE là trung trực của đoạn thẳng CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
a: AB=8(cm)
b: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BA=BD
BH chung
Do đó:ΔBAH=ΔBDH
Suy ra: HA=HD
c: Xét ΔAHK vuông tại A và ΔDHC vuông tại D có
HA=HD
\(\widehat{AHK}=\widehat{DHC}\)
Do đó: ΔAHK=ΔDHC
Suy ra: AK=DC
Ta có: BA+AK=BK
BD+DC=BC
mà BA=BD
và AK=DC
nên BC=BK
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: HB=HC=BC/2=9(cm)
nên AH=12(cm)
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 2 tham khảo
a) Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b) HB=HC=BC/2=9(cm)
nên AH=12(cm)
c) Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
ˆMAH=ˆNAHMAH^=NAH^
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d) Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
Suy ra: AC=DB và \(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DB
hay DB\(\perp\)AB
Xét ΔCAB vuông tại A và ΔDBA vuông tại D có
BA chung
CA=DB
Do đó: ΔCAB=ΔDBA
Suy ra: CB=DA
b: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Suy ra: AD=10cm
a: góc B=90-30=60 độ
b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
=>ΔBAM=ΔBDM
=>MA=MD
d: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
góc AMN=góc DMC
=>ΔMAN=ΔMDC
=>MN=MC
=>ΔMNC cân tại M