K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

19 tháng 7 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

24 tháng 1 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Tính BE.BA + CD.CA

Chứng minh tương tự câu b, CD.CA = CI.CB

Từ đó BE.BA + CD.CA = BI.BC + CI.CB

= (BI + CI).BC = BC.BC = B C 2 = 16 2  = 256

17 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh AI BC

Ta có ∠BEC = BDC = 90 0 (hai góc nội tiếp chắn nửa đườn tròn)

a: góc BEC=góc BDC=1/2*180=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH+góc ADH=180 độ

=>AEHD nội tiếp

b: góc EFH=góc ABD

góc DFH=góc ACE
mà góc ABD=góc ACE

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD

a: góc BEH+góc BKH=180 độ

=>BEHK nội tiếp

=>góc EBH=góc EKH

góc BKA=góc BDA=90 độ

=>ABKD nội tiếp

=>góc EBH=góc AKD=góc EKH

=>KA là phân giác của góc EKD

b: góc AIO=góc AJO=góc AKO=90 độ

=>I,J,K,A,O cùng thuộc đường tròn đường kính OA

sđ cung AI=sđ cung AJ

=>góc AKI=góc AJI

=>góc AKE+góc IKE=góc AKD+góc DKJ

=>góc IKE=góc DKJ

c: