Cho \(\Delta ABC\)nhọn, vẽ ra ngoài hai tam giác vuông cân. \(\Delta AEB\)và\(\Delta ACF\)vuông cân tại A
a,Chứng minh EC=BF
b,Vẽ AH vuông góc với BC(H thuộc BC), đường thẳng AH cắt EF tại I
Chứng minh I là trung điểm của EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ EM ; FN vuông góc với AH
+)Tam giác EMA vuông tại M => góc MEA + EAM = 90o
Mà góc BAH + EAM = 90o (do góc BAE = 90o) nên góc MEA = BAH
Xét tam giác vuông BAH và AEM có: BA = AE; góc BAH = AEM
=> tam giác BAH = AEM ( cạnh huyền - góc nhọn)
=> EM = AH (1)
+) Tương tự, ta chứng minh tam giác vuông AHC = tam giác vuông FNA ( cạnh huyền - góc nhọn)
=> AH = FN (2)
Từ (1)(2) => EM = FN
+) EM // FN (vì cùng vuông góc với AH) => góc MEO = NFO ( SLT)
+) Xét tam giác vuông MEO và NFO có: MEO = NFO; ME = NF; góc EMO = FNO (=90o)
=> tam giác MEO = tam giác NFO ( g - c- g)
=> OE = OF => O là trung điểm của EF
a) xét tg EAC và tg BAF
có: EA = BA (gt); ^EAC =^BAF ( ^EAB = ^ FAC = 90 độ, ^BAC chung); AC = AF(gt)
=> tg EAC = tg BAF(c-g-c)
=> EC = BF ( 2 cạnh t/ư)
b) Kẻ \(EG\perp AH⋮G;FK\perp AH⋮K\)
xét tg EGA vuông tại G và tg AHB vuông tại H
có: EA = AB (gt); ^EAG =^ABH ( cùng phụ với ^BAH)
=> tg EGA = tg AHB( ch-gn)
=> EG = AH ( 2 cạnh t/ư) (1)
chứng minh tương tự, có: tg AFK = tg CAH(ch-gn)
=> FK = AH (2 cạnh t/ư) (2)
Từ(1);(2) => EG = FK (=AH)
xét tg EGI vuông tại G và tg FKI vuông tại K
có: EG = FK (cmt); ^EIG = ^FIK (đ đ)
=> tg EGI = tg FKI ( cgv -gn)
=> EI = FI (2 canh t/ư)
=> I là trung điểm của EF
...
hình bn tự kẻ nha
cảm ơn bn