cho tam giác ABC vuông cân tại A .I là giao điểm của 3 đường phân giác CMR
\(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Rightarrow\hept{\begin{cases}a=b.k\\b=c.3k\\c=c.9k\end{cases}\Leftrightarrow abc=abc.27k^3.}\)
\(\Leftrightarrow k=\frac{1}{3}\Rightarrow\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c.\)
Bài hình do ngại, mình chụp ảnh ko đưa lên đây dc. nên thôi nhé .
Hình thì bạn tự vẽ nhé
Kẻ ID, IE, IF lần lượt vuông với AB, BC, CE
- vì I là giao điểm 3 dường phân giác của tam giác nên ID = IE = IF = x
- ta có: \(\Delta ADI\) vuông tại D có \(\widehat{DAI}=45^0\) suy ra \(\Delta ADI\)vuông cân tại D
hay AD = ID = x
- chứng minh tương tự, ta dươc ID = IE = IF = AD = AF = x
- ta có: \(\Delta BDI=\Delta BEI\)(cạnh huyền - góc nhọn )
nên BD = BE = y
- chứng minh tương tự, ta có: CE = CF = z
Ta có: \(CI^2=CE^2+IE^2=z^2+x^2\) (1)
Lại có: \(\frac{\left(BC-AB\right)^2+AC^2}{2}=\frac{\left[\left(y+z\right)-\left(x+y\right)\right]^2+\left(x+z\right)^2}{2}\)
\(=\frac{\left(z-x\right)^2+\left(x+z\right)^2}{2}=\frac{z^2-2xz+x^2+x^2+2xz+z^2}{2}=\frac{2\left(x^2+z^2\right)}{2}=x^2+z^2\) (2)
So sánh (1) và (2) suy ra đpcm.
Bạn đừng đăng bài của cuộc thi bên mình nhé, nếu bạn muốn biết đáp án thì để hết vòng 1 mình sẽ làm
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Bài giải :
Gọi E,D,F lần lượt là hình chiếu của I trên các cạnh BC,AB,AC.
Vì I là giao điểm các đường phân giác trong tam giác ABC nên : ID = IE = IF = x
- Ta có : Tam giác ADI vuông tại D có góc DAI = \(45^o\)
⇒ Tam giác ADI vuông cân tại D .
hay AD = ID = x
- Xét hai tam giác vuông AID và tam giác vuông AIF có :
Tam giác vuông AID = Tam giác vuông AIF ( cạnh huyền-góc nhọn )
⇒AD = AF = x
Vậy ID = IE =IF = AD = AF = x
Xét hai tam giác vuông BEI và tam giác vuông BDI có :
Tam giác vuông BDI = tam giác vuông BEI ( cạnh huyền - góc nhọn)
nên BD = BE = y
- Tương tự ta có : tam giác vuông CIE = tam giác vuông CIF
nên CE = CF = z
Ta có :
\(CI^2=CE^2+IE^2=z^2+x^2\left(1\right)\)
Mà : \(\frac{\left(BC-AB\right)^2+AC^2}{2}=\frac{\left[\left(y+z\right)^2-\left(x+y\right)^2\right]+\left(x+z\right)^2}{2}\)
\(=\frac{\left(z-x\right)^2+\left(x+z\right)^2}{2}=\frac{2x^2+2z^2}{2}=x^2+z^2\left(2\right)\)
Từ (1) và (2) ta có \(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)