Cho tam giác ABC, gọi E,F lần lượt là trung điểm của BA, BC. Lấy điểm M trên đoạn thẳng EF (M Khác E, M khác F). Chứng minh: S AMB + S BMC = S MAC.
Mấy thầy cô và mấy bạn giải nhanh giúp mình, 7h tối nay mình phải nộp bài cho thầy cô rồi :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔKMC có
MA=MK
\(\widehat{AMB}=\widehat{KMC}\)
MB=MC
Do đó: ΔAMB=ΔKMC
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của FE
hay F,M,E thẳng hàng
a) Xét \(\Delta\)AMB = \(\Delta\)AMC có :
AB=AC (gt)
AM_chung
BM = CM (gt)
=>\(\Delta\)AMB = \(\Delta\)AMC (c.c.c)
yên tâm , bài khó đã có mình
a) tam giác ABC cân tại A do AB=AC
M là trung điểm của BC
=> AM zừa là đường trung tuyến zừa là đường cao hay phân giác
=>\(\widehat{BAM}=\widehat{CAM}\)
xét tam giác AMB zà tam giác AMC có
AB=AC(gt)
AM chung
\(\widehat{BAM}=\widehat{CAM}\left(cmt\right)\)
=> tam giác AMB = tam giác AMC (c.g.c)
b) ta có \(\hept{\begin{cases}DK\perp AM(ABCcân)\\BC\perp AM\end{cases}=>DE//BC}\)mà ABC cân => AD=AE
c) ta có \(\hept{\begin{cases}EF=MC\\MC//EK\end{cases}=>MEKC}\)là hbh
=> MF , EC căt nhau tại trung điểm mỗi đường
mà H là trung điểm EC
=> H nằm trên cạnh MF
=> M,H,F thẳng hàng
a) CM : tam giác ABM = tam giác DCM
Xét tam giác ABM và tam giác DCM có:
BM = CM ( M là trung điểm của BC )
MA = MD ( gt )
góc BMA = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác DCM ( c- g - c)
b ) CM AB // CD
Theo chứng minh trên, ta có:
góc BAM = góc CDM ( 2 góc tương ứng của tam giác ABM = tam giác DCM )
mà hai góc này ở vị trí so le trong nên AB // CD
-------
Bạn nên vẽ hình và dùng kí hiệu ra nha, mình ghi nhanh giải cho bạn thôi <3