K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

O A B C D I M H K

6 tháng 4 2019

Xét \(\Delta OAC\)và \(\Delta DBO\)có :

\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\)\(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DBO\)( g . g )

\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC

b) \(\Delta OAC\)\(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)

xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\)\(\widehat{CAO}=\widehat{COD}=90^o\)

\(\Rightarrow\)\(\Delta OAC\)\(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)

xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )

\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ; 

c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM

Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M

\(\Rightarrow\)OC // BM

gọi gđ BM với AC là I

\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC

gọi K là gđ BC với MH

MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH 

\(\Rightarrow\)BC đi qua trung điểm MH

d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)

Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)

\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)

Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)

Vậy C thuộc Ax và cách A 1 khoảng bằng OA

3 tháng 7 2016

Cho o là trung điểm của đoạn AB. Trên cùng môtj nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với Ab. TRên tia Ax lấy C( khác A), qua o kẻ đường thawnggr vuông góc với OC cắt By tại D.

a. CM: (AB)^2= 4AC.BD

3 tháng 7 2016

minh se noi cach tu duy cua minh, mong ban hieu

AB^2=4AC.BD=>(2OA)^2=4AC.BD=>4OA^2=4AC.BD=>Ban phai chung minh OA^2=AC.BD

Day la cach chung minh: goc COA+COD+DOB=180

Ma COD=90(theo gt)=>COA+BOD=90(1)

Trong tam giac COA co CAO=90:COA+ACO=90(2)

Tu (1)va(2) ta=>BOD=ACO

xet tam giac CAO va OBD co:

CAO=OBD=90

BOD=ACO(theo cm tren)

=>tam giac CAO dong dang voi tam giac OBD=>AC/OA=OB/BD=>AC/OA=OA/BD=>OA^2=AC.BD

2 tháng 5 2018

A B x y O C D M

a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)

=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)

\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)

\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)

b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)

=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)

=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)

=> AC=CM (đpcm).

26 tháng 3 2019

Đáp án A

15 tháng 3 2019

28 tháng 11 2019

Tham khảo here =))

https://olm.vn/hoi-dap/detail/67509118574.html

28 tháng 11 2019

*Độc giả tự vẽ hình, người giải ko biết cách đăng hình:))*

Gọi giao điểm của CO và BD là Z

Xét 2 tam giác vuông AOC và BOZ có:

OA=OB (O là trung điểm AB)

Góc AOC = góc BOZ (đối đỉnh)

Suy ra: tam giác AOC = tam giác BOZ (cgv-gn)

Do đó: AC=BZ và OC=OZ (các cặp cạnh tương ứng)

Vì OC=OZ nên O là trung điểm CZ => OD là đường trung tuyến tam giác DCZ (1)

Vì OD vuông góc OC nên OD là đường cao tam giác DCZ (2)

Từ (1) và (2) suy ra: tam giác DCZ cân tại D (có OD vừa là đường cao vừa là đường trung tuyến) => CD=DZ (3)

Mặt khác: DZ=BD+BZ

Mà: AC=BZ (cmt)

Nên: DZ=BD+AC (4)

Từ (3) và (4) suy ra: CD=BD+AC (đpcm)