K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)

\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)

Đến đây t cần chứng minh:

 \(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)

Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)

\(\Rightarrow x+y+z=1\)

(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)

Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)

Nhứng phần kia tương tự

\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)

Lần trước làm không đúng hy vọng bây giờ gỡ lại được

21 tháng 4 2020

nub

Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

29 tháng 1 2020

Ta có: \(ab+bc+ca=abc\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)

\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)

Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Chứng minh tương tự ta được:

\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)

Cộng vế với vế:

\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

hay ko = hên :)) nghĩ bừa cái ra lun 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)\(\Leftrightarrow\)\(\frac{1}{a}+1=1-\frac{1}{b}+1-\frac{1}{c}\)

\(\Leftrightarrow\)\(\frac{a+1}{a}=\frac{b-1}{b}+\frac{c-1}{c}\ge2\sqrt{\frac{\left(b-1\right)\left(c-1\right)}{bc}}\)

Tương tự ta cũng có : 

\(\frac{b+1}{b}\ge2\sqrt{\frac{\left(c-1\right)\left(a-1\right)}{ca}};\frac{c+1}{c}\ge2\sqrt{\frac{\left(a-1\right)\left(b-1\right)}{ab}}\)

Nhân theo vế ta được : 

\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{abc}\ge8\sqrt{\frac{\left(a-1\right)^2\left(b-1\right)^2\left(c-1\right)^2}{a^2b^2c^2}}=\frac{8\left(a-1\right)\left(b-1\right)\left(c-1\right)}{abc}\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\le\frac{1}{8}\left(a+1\right)\left(b+1\right)\left(c+1\right)\) ( đpcm ) 

...

17 tháng 3 2017

\(~Angle\)\(Darkness~\)

6 tháng 4 2015

Dat A la bieu thuc cho truoc ve trai

tu gia thiet => a(b+c)=3-bc

ta co: 1+a^2(b+c)= 1+a.a.(b+c) = 1+a.(3-bc) = 1+3a-abc

cmtt ta co : 1+b^2(a+c)=1+b.b(a+c)=1+3b-abc

Va: 1+c^2(a+b)=1+3c-abc

Ap dung bdt Cosi cho 3 so ta co

ab+ac+bc >= 3.can bac 3(a^2.b^2.c^2)

=> 3>= 3.can bac 3(a^2.b^2.c^2)

=> a^2.b^2.c^2<=1

=> abc<=1

=> 1+3a-abc>=3a

cmtt 1+3b-abc>=3b

1+3c-abc>=3c

=> A<=1/3a+1/3b+1/3c=(bc+ac+ab)/3abc=1/abc

 

18 tháng 9 2016

cho 2 số thực a , b phân biệt thỏa mãn a^2 +3a=b^2 +3b=2

c/m: a, a+b=-3            b,a^3+b^3=-45

13 tháng 7 2019

Mình chịu 

13 tháng 7 2019

\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương ) 

\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

...