K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đáp án là :

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

2 tháng 4 2019

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

P/S : quá dễ , t là thần đồng mà . 

Mỗi ngày 3 T i c   k , giờ làm như lời hứa đi

3 tháng 4 2019

ăn clkt

HẾT RỒI NHÉ ĐÁP ÁN LÀ : 

+ Ta có: y '= 3x2 + 6x + m

      + Để hàm số đã cho đồng biến trên R thì y' ≥ 0,∀x ∈R

      + Yêu cầu bài toán trở thành tìm điều kiện của m để y' ≥ 0,∀x ∈R

Ta có y' = 3x2 + 6x + m, ta có: a = 3>0,Δ = 36 - 12m

Để y' ≥ 0,∀x ∈ R khi Δ ≤ 0 ⇔ 36 - 12m ≤ 0 ⇔ m ≥ 3

Vậy giá trị của tham số m cần tìm là m ≥ 3

10 tháng 7 2017

a) TXĐ: R

y′ = 6x − 24 x 2  = 6x(1 − 4x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)

y' < 0 trên các khoảng ( - ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng ( - ∞ ;0 ); (14; + ∞ )

b) TXĐ: R

y′ = 16 + 4x − 16 x 2  − 4 x 3  = −4(x + 4)( x 2  − 1)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số y đã cho đồng biến trên các khoảng ( - ∞ ; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; + ∞ )

c) TXĐ: R

y′ = 3 x 2 − 12x + 9

y' = 0

y' > 0 trên các khoảng ( - ∞ ; 1), (3;  + ∞ ) nên y đồng biến trên các khoảng ( - ∞ ; 1), (3;  + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

d) TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0;  + ∞ ) ⇒ y đồng biến trên khoảng (0;  + ∞ )

y' < 0 trên khoảng ( - ∞ ; 0) ⇒ y nghịch biến trên khoảng ( - ∞ ; 0)

 
15 tháng 9 2019

TXĐ: R

y′ = 3 x 2  − 12x + 9

y' = 0

y' > 0 trên các khoảng (- ∞ ; 1), (3; + ∞ ) nên y đồng biến trên các khoảng (- ∞ ; 1), (3; + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

2 tháng 7 2019

Đáp án D

Phương pháp: +) Khảo sát sự biến thiên của đồ thị hàm số.

+) Hàm số đạt cực trị tại điểm x = x 0 ⇔ y ' x 0 = 0 và x = x 0  được gọi là điểm cực trị.

+) Hàm số đạt cực trị tại điểm x = x 0 thì  y x 0 là giá trị cực trị.

Như vậy có 3 mệnh đề đúng.

Chú ý: Học sinh thường giá trị cực trị và

 điểm cực trị nên có thể chọn sai mệnh dề (2) đúng.

24 tháng 3 2018

Chọn D

Tập xác định: .

Đạo hàm: .

.

Bảng biến thiên:

Hàm số đồng biến trên các khoảng .

Do đó hàm số nghịch biến trên khoảng .

17 tháng 5 2019

25 tháng 7 2019

15 tháng 11 2018

TXĐ: R

y′ = 16 + 4x − 16 x 2  − 4 x 3  = −4(x + 4)( x 2  − 1)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số y đã cho đồng biến trên các khoảng (- ∞ ; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; + ∞ )

1 tháng 3 2017

Chọn đáp án D.

Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)

thì phương trình  f t = m có nghiệm t ∈ ( 0 ; 1 ]  

Quan sát đồ thị thấy phương trình  f t = m  có nghiệm  t ∈ ( 0 ; 1 ]  khi  - 1 ≤ m < 1