Cho tam giác ABC vuông tại B, đường phân giác AD (D thuộc BC). Kẻ BO vuông góc với AD (O thuộc AD), BO cắt AC tại E. Chứng minh:
a) Hai tam giác ABO, AEO bằng nhau.
b) Tam giác BAE cân
c) AD là đường trung trực của BE
d) Kẻ BK vuông góc với AC (K thuộc AC). Gọi M là giao điểm của BK với AD. Chứng minh rằng ME song song với BC.
Mình biết làm câu a, b, c nhưng hơi bận nên chỉ vẽ hình rồi để ngày mai mình làm cho nhé :v
Bây giờ mới rảnh :v
a) C/m ΔABO = ΔAEO:
Xét ΔABO và ΔAEO có:
∠EAO = ∠BAO (AD là tia phân giác)
AO chung
∠AOE = ∠AOB (= 90o)
=> ΔABO = ΔAEO (g-c-g)
b) C/m ΔABE cân:
Ta có: ΔABO = ΔAEO (cmt)
=> AB = AE (cạnh tương ứng)
Vậy ΔABE cân
c) C/m AD là đường trung trực của BE
Ta có: ΔABO = ΔAEO (cmt)
=> BO = EO (cạnh tương ứng)
=> O là trung điểm của BE
Mà ∠AOE = ∠AOB (= 90o)
=> AD là đường trung trực của BE