K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)

a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)

b: AD là phân giác

=>BD/AB=CD/AC
=>BD/20=CD/21=29/41

=>BD=580/41cm; CD=609/41cm

c: Xet tứ giác AEDF có

AE//DF

DE//FA

góc FAE=90 độ

AD là phan giác của góc FAE

=>AEDF là hình vuông

1 tháng 3 2022

a. -Xét △ABC: AD là đường phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)

\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)

\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)

b) -Xét △ABC: DE//AB (gt)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)

Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)

c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))

Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)

\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.

\(\Rightarrow AE=DE\)

-Xét △AIE: AP là đường phân giác.

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)

Mà \(AE=DE\left(cmt\right)\)\(AI=BI\) (I là trung điểm AB)

\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)

-Xét △QDE: DE//BI.

\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)

Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)