Xx6+x:3=1/2
Bạn nào biết làm bài này thì giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O1=O2( vì 2 góc đối đỉnh)
O3 và O4 thì làm theo cách hai góc kề bù
Vd :O1+O3=180 độ (2 góc kề bù)
Suy ra :120 độ +O3=180 độ
Vậy từ đó tính ra đc O3 ,tương tự O4 cũng vậy
What ????? Đề đâu ?
Chúc bạn : Hok_Ngu
#Thiên_Hy
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
a ...13 chia hết cho 3 là:213,513,723
b 1...8 chia hết cho 9 là:108,198
c 36... chia hết cho 3và5 là:360
d 891... chia hết cho 2,3,5 và 9 là;8910
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3+9x+2=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8-2\)
\(\Leftrightarrow x^3+9x=x^3+6\)
\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)
\(\Leftrightarrow\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^4-4=8x-16+16\)
\(\Leftrightarrow x^2+12=8x\)
\(\Leftrightarrow x^2+12=8x-8x\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
\(x\times6+x\div3=\frac{1}{2}\)
\(\Leftrightarrow x\times6+x\div\frac{3}{1}=\frac{1}{2}\)
\(\Leftrightarrow x\times6+x\times\frac{1}{3}=\frac{1}{2}\)
\(\Leftrightarrow x\times\left[6+\frac{1}{3}\right]=\frac{1}{2}\)
\(\Leftrightarrow x\times\frac{19}{3}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{19}{3}=\frac{3}{38}\)
Study well >_<
vao FX570 an phep tinh ra roi an ST VA CALC