Tìm các số tự nhiên (x,y) thỏa mãn phương trình:3x3-xy=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0
y,z=0 vo nghiem
x=0=> 1+2017^y=2018^z
co nghiem (x,y,z)=(0,1,1)
\(xy+x-y=4\)
\(x\left(y+1\right)-\left(y+1\right)=3\)
\(\left(y+1\right)\left(x-1\right)=3=3\cdot1=1\cdot3=-3\cdot-1=-1\cdot-3\)
lập bảng
xy+x-y=4
x(y+1)-(y+1)=3
(y+1) .(x-1)=3=3.1=1.3--3.(-1)=-1.(-3)
nhớ lập bảng
Xét x = 0
Ta có 1 + 2017y = 2018z
mà 1+2017 = 2018
Nên x = 0; y = z = 1
Xét x > 0
2016 tận cùng 6 nên 2016x luôn tận cùng 6
2017y có tận cùng là 7y và là 1, 7, 9, 3
2018z có tận cùng là 2, 4, 6, 8
Có 6 + 1= 7
6 + 3 = 9
6 + 7 = 13
6 + 9 = 15
Vế trái không có tận cùng bằng VP nên không thỏa mãn
Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13