Dùng pp hệ số bất định để c/m bài toán sau: (nhớ giải thích tại sao lại có bđt phụ nhé)
Cho a,b,c là các số thực dương.CMR:
\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:
\(\left(x+y+z\right)^2+14xyz\ge4\)
Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)
\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)
\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)
\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)
\(\ge4\left(xy+yz+xz\right)+8xyz=4\)
Cách này xem có đúng không nha bạn
Dự đoán điểm rơi: a=b=c (Để có thể dễ áp dụng AM-GM mà không sai)
Đặt: \(\hept{\begin{cases}a+b=x\\b+c=y\\a+c=z\end{cases}}\)
Do đó: \(\hept{\begin{cases}\frac{a}{b+c}=\frac{\frac{x+z-y}{2}}{y}=\frac{x+z-y}{2y}\\\frac{b}{c+a}=\frac{\frac{x+y-z}{2}}{z}=\frac{x+y-z}{2z}\\\frac{c}{a+b}=\frac{\frac{y+z-x}{2}}{x}=\frac{y+z-x}{2x}\end{cases}}\)
Thế vào:
\(VT=\left(\frac{3}{2}+\frac{x+z-y}{2y}\right)\left(\frac{3}{2}+\frac{x+y-z}{2z}\right)\left(\frac{3}{2}+\frac{y+z-x}{2x}\right)\)
\(=\frac{3y+x+z-y}{2y}\cdot\frac{3z+x+y-z}{2z}+\frac{3x+y+z-x}{2x}\)
\(=\frac{x+z+2y}{2y}\cdot\frac{x+y+2z}{2z}\cdot\frac{y+z+2x}{2x}\)
\(=\frac{x+z+y+y}{2y}\cdot\frac{x+y+z+z}{2z}\cdot\frac{y+z+x+x}{2x}\ge\frac{4\sqrt[4]{xy^2z}\cdot4\sqrt[4]{xyz^2}\cdot4\sqrt[4]{x^2yz}}{8xyz}=\frac{64\sqrt[4]{x^4y^4z^4}}{8xyz}=8\)
Vậy suy ra đpcm.
Mik đặt x+z+y+y và x+y+z+z và y+z+x+x ra rồi áp dụng AM-GM cho 4 số thực dương vì lúc đó bất đẳng thức có điểm rơi khi x=y=z hay a=b=c đúng với điểm rơi của Bđt cần CM.
Học tốt! Share thêm bài nha
Chắc ok đấy.Mình đăng lời giải của tạp chí Toán tuổi thơ nha!
Lời giải (chú ý là của tạp chí Toán tuổi thơ chứ không phải của mình)
Ta có: \(\frac{3}{2}+\frac{a}{b+c}=\frac{3b+3c+2a}{2\left(b+c\right)}\)
Áp dụng BĐT AM-GM,ta có:
\(\left(c+a\right)+\left(a+b\right)\ge2\sqrt{\left(c+a\right)\left(a+b\right)}\);
\(2\left(\sqrt{\left(c+a\right)\left(a+b\right)}+\left(b+c\right)\right)\ge4\sqrt[4]{\left(c+a\right)\left(a+b\right)\left(b+c\right)^2}\)
Thiết lập hai BĐT còn lại tương tự và nhân theo vế suy ra đpcm.
Đẳng thức xảy ra khi và chỉ khi a + b = b + c = c + a <=> a = b =c
mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi
thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm
bài này thật ra không khó chỉ cần tách đúng là được à bạn thử ngồi tách xem đi
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
BĐT
<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)
<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)
Khi đó BĐT
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8
Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)
Cách này khá phức tạp dùng để tìm BĐT phụ
Để giải dễ hơn và không mất tính tổng quát thì giả sử a+b+c=3. Điểm rơi: a=b=c=1 và Min=3/4
Bất đẳng thức quy về dạng
\(\frac{a}{\left(a-3\right)^2}+\frac{b}{\left(b-3\right)^2}+\frac{c}{\left(c-3\right)^2}\ge\frac{3}{4}\)
Tìm m,n sao cho: \(\frac{a}{\left(a-3\right)^2}\ge am+n\)
Tương tự với \(\frac{b}{\left(b-3\right)^2}\)và \(\frac{c}{\left(c-3\right)^2}\)
Ta có: \(VT\ge\left(a+b+c\right)m+3n=3\left(m+n\right)\)
\(\Rightarrow3\left(m+n\right)=\frac{3}{4}\Rightarrow m+n=\frac{1}{4}\Rightarrow m=\frac{1}{4}-n\)
Thế ngược lên trên:
\(\frac{a}{\left(a-3\right)^2}\ge\frac{1}{4}a-an+n\)
\(\Leftrightarrow\frac{a}{\left(a-3\right)^2}-\frac{1}{4}a\ge n\left(1-a\right)\)
\(\Leftrightarrow a\left(\frac{1}{\left(a-3\right)^2}-\frac{1}{4}\right)\ge n\left(1-a\right)\)
\(\Leftrightarrow a\left(\frac{-\left(a^2-6a+5\right)}{4\left(a-3\right)^2}\right)\ge n\left(1-a\right)\)
\(\Leftrightarrow\frac{a\left(1-a\right)\left(a-5\right)}{4\left(a-3\right)^2}\ge n\left(1-a\right)\)
\(\Rightarrow n=\frac{a\left(a-5\right)}{4\left(a-3\right)^2}=\frac{1}{4}\)khi a=1 (điểm rơi lấy xuống)
\(\Rightarrow m=\frac{1}{2}\)
BĐT phụ cần CM: \(\frac{a}{\left(a-3\right)^2}\ge\frac{2a-1}{4}\)
Cho a,b,c>0. Cmr: a/(b+c)^2+b/(c+a)^2+c/(a+b)^2>=9/[4(a+b+c)]. Giup minh vs...!? | Yahoo Hỏi & Đáp