Cho tam giác ABC cân tại A có góc A bằng 20 độ. lấy M trên cạnh AC sao cho góc ABM bằng 10 độ. chứng minh AM =BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=180-80-60=40 độ
góc A>góc B>góc C
=>BC>AC>AB
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDMC và ΔDAH có
góc DMC=góc DAH
DM=DA
góc MDC=góc ADH
=>ΔDMC=ΔDAH
=>DC=DH
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
Trả lời:
Tam giác AIM = tam giác CIM ( ch-chg)
nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau
Vậy góc AMC = góc BAC.
Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)
do đó: góc ABM = góc CAM.
Vậy tam giác ABM= tam giác CAN (c.g.c)
=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C
Tam giác ABC cân tại A có góc BAC =45
=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′
Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′
Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′
⇒ACNˆ=22030′⇒ACN^=22o30′
MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o
\(\Rightarrow\)Tam giác CMN vuông cân ở C
~Học tốt!~
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá