K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

cách này mình tự nghĩ 

\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)

\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)

\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)

\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)

mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)

So sánh:

\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)

\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)

Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)

           \(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)

So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)

Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)

            \(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)

Vì 49.3 + 6 < 49.6 + 5 nên Q > P.

           

1 tháng 4 2018

b) \(\frac{5}{9}\)và \(\frac{5}{8}\) :Quy đồng mẫu số : \(\frac{5}{9}\) = \(\frac{5.8}{9.8}\) = \(\frac{40}{72}\) ; \(\frac{5}{8}\) = \(\frac{5.9}{8.9}\) = \(\frac{45}{72}\)

Vì \(\frac{40}{72}\) < \(\frac{45}{72}\) nên \(\frac{5}{9}\) < \(\frac{5}{8}\)

c)\(\frac{8}{7}\) và \(\frac{7}{8}\) :Quy đồng mẫu số: \(\frac{8}{7}\) = \(\frac{8.8}{7.8}\) = \(\frac{64}{56}\) ; \(\frac{7}{8}\) = \(\frac{7.7}{8.7}\) =\(\frac{49}{56}\)

Vì \(\frac{64}{56}\) > \(\frac{49}{56}\) nên \(\frac{8}{7}\) > \(\frac{7}{8}\)

bạn an đông à cái câu A của bạn sai một chút.

CHÚC BẠN HỌC TỐT !

1 tháng 4 2018

a)\(\frac{3}{7}\) và\(\frac{2}{8}\) :Quy đồng mẫu số : \(\frac{3}{7}\) = \(\frac{3.8}{7.8}\) = \(\frac{24}{56}\) ; \(\frac{2}{8}\) = \(\frac{2.7}{8.7}\) = \(\frac{14}{56}\)

Vì \(\frac{24}{56}\) > \(\frac{14}{56}\) nên \(\frac{3}{7}\) > \(\frac{2}{8}\)