Tìm GTLN của \(\frac{2012}{x^2+4x+2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.
Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.
Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.
Vậy GTLN = 2012/2009.
a)\(P=\dfrac{2012}{x^2+4x+2013}\)
Ta thấy: \(x^2+4x+2013=x^2+4x+4+2009\)
\(=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow\dfrac{1}{\left(x+2\right)^2+2009}\le\dfrac{1}{2009}\)
\(\Rightarrow P=\dfrac{2012}{\left(x+2\right)^2+2009}\le\dfrac{2012}{2009}\)
Xảy ra khi \(x=-2\)
\(D=-x^2+8x-4\)
\(D=-x^2+8x-16+12\)
\(D=-\left(x-4\right)^2+12\)
Có \(-\left(x-4\right)^2\le0\)
\(\Rightarrow D\le12\)
Vậy Max D = 12<=>x=4
\(E=-2x^2-4x+5\)
\(E=-2x^2-4x-2+7\)
\(E=-2\left(x+1\right)^2+7\le7\)
Vậy Max E = 7<=>x=-1
\(A=\frac{2012}{x^2+4x+2013}=\frac{2012}{x^2+4x+4+2009}=\frac{2012}{\left(x+2\right)^2+2009}\)
ta thấy biểu thức A đạt giá trị lớn nhất khi mẫu phân số nhỏ nhất
(x+2)2+2009 nhỏ nhất là bằng 2009 vì (x+2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
Vậy biểu thức A lớn nhất bằng 2012/2009 khi x+2 = 0 <=> x = -2
\(B=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)
B lớn nhất khi \(\frac{2}{a^{2012}+2011}\) lớn nhất , <=> a2012+2011 nhỏ nhất, a2012+2011 nhỏ nhất = 2011 khi a = 0
Vậy B lớn nhất là: \(B=1+\frac{2}{2011}=\frac{2013}{2011}\) khi a = 0
Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.
Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.
Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.
Vậy GTLN = 2012/2009.
Ta có:\(x^2+4x+2013=\left(x^2+2\cdot2x+2^2\right)+2009=\left(x+2\right)^2+2009\)
\(\Rightarrow HUY=\frac{2012}{x^2+4x+2013}=\frac{2012}{\left(x+2\right)^2+2009}\)
Để HUY lớn nhất thì \(\left(x+2\right)^2+2009\) nhỏ nhất.
Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow HUY\ge\frac{2012}{2009}\)
Dấu "=" xảy ra khi và chỉ khi:\(\left(x+2\right)^2=0\Leftrightarrow x=-2\).
Vậy \(HUY_{max}=\frac{2012}{2009}\Leftrightarrow x=-2\)
By zZz Phan Gia Huy zZz.