K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

a) C/M ΔABH ∼ ΔCBA, ΔBAM ∼ ΔBCD

Xét ΔABH và ΔCBA, ta có:

\(\widehat{AHB}=\widehat{CAB}=90^0\left(gt\right)\)

\(\widehat{B}:chung\)

Vậy ...................................

Xét ΔBAM và ΔBCD, ta có:

\(\widehat{ABM}=\widehat{CBD}\) (BD phân giác)

\(\widehat{BAM}=\widehat{BCD}\) ( cùng phụ với \(\widehat{HAC}\))

Vậy ......................................

b) C/M \(\frac{AB}{AD}=\frac{CB}{CD}\) và AB.AM = BC.HM

Ta có BD phân giác \(\widehat{B}\) (gt)

\(\frac{AB}{AD}=\frac{CB}{CD}\) (T/C đường phân giác)

Ta có BM phân giác \(\widehat{B}\) (do M∈BD)

\(\frac{AM}{HM}=\frac{AB}{BH}\) (T/C đường phân giác)

\(\frac{AB}{BH}=\frac{BC}{AB}\) (do ΔABH ∼ ΔCBA)

\(\frac{AM}{HM}=\frac{BC}{AB}\)

Vậy AB.AM = BC.HH

TẠM THỜI MÌNH GIẢI a VỚI b NHA, c GIÀI SAU

NV
27 tháng 3 2019

Từ câu b ta có:

\(AB.AM=BC.HM\Rightarrow\frac{AM}{HM}=\frac{BC}{AB}=3\Rightarrow AM=3HM\)

\(\Rightarrow\frac{AH}{HM}=\frac{AM+HM}{HM}=\frac{4HM}{HM}=4\Rightarrow AH=4HM\)

Lại có:

\(\Delta ABH\sim\Delta CAB\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow BH=\frac{AB^2}{BC}=\frac{AB^2}{3AB}=\frac{AB}{3}\)

\(AB=\frac{1}{3}BC\Rightarrow BH=\frac{1}{9}BC\Rightarrow BC=9BH\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4HM.9BH=36.\left(\frac{1}{2}HM.BH\right)=36.S_{BHM}\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

23 tháng 3 2022

a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)

NV
14 tháng 9 2021

Áp dụng hệ thức lượng:

\(AB^2=BH.BC=BH\left(BH+CH\right)\)

\(\Leftrightarrow36=BH\left(BH+6,4\right)\)

\(\Leftrightarrow BH^2+6,4BH-36=0\Rightarrow\left[{}\begin{matrix}BH=3,6\\BH=-10\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow BC=BH+CH=10\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)

 

NV
20 tháng 3 2023

Do tam gaics ABC vuông tại A nên:

\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)

19 tháng 3 2022

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)

Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)

\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

26 tháng 5 2022

hello thì ra cũng bên hoidap247