K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Ôn tập: Tam giác đồng dạng

a, Vì ΔABC vuông tại A ⇒ \(\widehat{BAC}=90^0\)

Vì AH là đường cao của ΔABC

⇒ AH ⊥ BC

\(\widehat{H_1}=\widehat{H_2}=90^0\)

ΔABC và ΔHBA có

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BAC}=\widehat{H_1}=90^0\end{matrix}\right.\)

⇒ ΔABC ~ ΔHBA (g.g)

\(\widehat{C}=\widehat{A_1}\)

ΔABH và ΔCAH có

\(\left\{{}\begin{matrix}\widehat{H_1}=\widehat{H_2}=90^0\\\widehat{A_1}=\widehat{C}\end{matrix}\right.\)

⇒ ΔABH và ΔCAH (g.g)(đpcm)

b, Tính BC dựa vào định lí Pitago

Tính AH dựa vào diện tích tam giác

c, Vì ΔABC ~ ΔHBA

\(\frac{AB}{BC}=\frac{AH}{AB}\)

⇒ AB2 = BH . BC

\(\frac{AB^2}{BH.BC}=1\)

\(\frac{AB}{BH}.\frac{AB}{BC}=1\)

ΔABC có BE là đường phân giác

\(\frac{AB}{BC}=\frac{AE}{EC}\) (2)

ΔABH có BI là đường phân giác

\(\frac{AB}{BH}=\frac{AI}{IH}\)(3)

Từ (1), (2), (3) ⇒ \(\frac{AI}{IH}.\frac{AE}{EC}=1\)(đpcm)

4 tháng 4 2020

ko dup dau leu  leu

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

=>ΔHBA đồng dạng với ΔABC

b; Xét ΔABE vuông tại A và ΔACB vuông tại A có

góc ABE=góc ACB

=>ΔABE đồng dạng với ΔACB

=>AB/AC=AE/AB

=>AB^2=AE*AC

c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có

góc HBD=góc ABE

=>ΔBHD đồng dạng với ΔBAE

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có

góc ABE=góc HBI

=>ΔBAE đồng dạng với ΔBHI

3: góc AEI=góc BEA=góc BIH

góc BIH=góc AIE

=>góc AEI=góc AIE

=>AE=AI