Cho S= (1 +1/2)+(1+2/22)+(1+2/23)+...+(1+2014/22014)
Chứng minh rằng S<2016
Làm ơn giúp mình
Mình sẽ báo đáp tử tế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
Easy!!
\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))
\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)
\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)
P/s: đpcm là điều phải chứng minh
Có \(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)
\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))
\(S=\dfrac{15}{29}>\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
Vậy S > \(\dfrac{1}{2}\)(đpcm)
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)