K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BDCE có 

BD//CE

BE//CD

Do đó: BDCE là hình bình hành

b: Ta có: BDCE là hình bình hành

nên BC cắt DE tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của DE

d: Xét tứ giác ABDC có 

\(\widehat{ABD}+\widehat{ACD}=180^0\)

Do đó: ABDC là tứ giác nội tiếp

Suy ra: \(\widehat{A}+\widehat{D}=180^0\)

a,
+,Có CK vuông góc AB
            BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
        CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

1 tháng 3 2015

a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G

=>AG vuông góc với DG => AG vuông góc với EF

-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)

=>góc AFE = góc AEF 

-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)

 

b) Xét tam giác CFD và tam giác MBD:

+) FDC = MDB (đối đỉnh)

+) CD=BD (D là trung điểm BC)

+) FCD = DBM ( so le trong - BM //AC)

=> tam giác CFD = tam giác MBD

=> CF = BM ( hai cạnh tương ứng)

- tam giác BME cân tại B (cmt) => BM=BE

=> CF=BE

 

c)-DO là đường trung trực của cạnh BC => BO=CO

-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO

-Xét tam giác OCF và tam giác OBE:

+) BO=CO (cmt)

+) FO=EO (cmt)

+) CF=BE (cmt)

=> tam giác OCF=tam giác OBE (đpcm)

8 tháng 5 2016

Gọi H là giao điểm của CF vs AB, K là trung điểm AH =&gt; DK&#x2F;&#x2F;GH =&gt; KH&#x2F;BH = DG&#x2F;BG (1) 
Mặt khác dễ thấy tg BCH cân tại B =&gt; BH = CB và theo tính chất phân giác ta có: 
AE&#x2F;CE = AB&#x2F;CB = (AH + BH)&#x2F;BH = AH&#x2F;BH + 1 &lt;=&gt; AH&#x2F;BH = AE&#x2F;CE - 1 = (AE - CE)&#x2F;CE = ((AD + DE) - (CD - DE))&#x2F;CE = 2DE&#x2F;CE (vì AD = CD) 
&lt;=&gt; 2KH&#x2F;BH = 2DE&#x2F;CE &lt;=&gt; KH&#x2F;BH = DE&#x2F;CE (2) 
Từ (1) và (2) =&gt; DE&#x2F;CE = DG&#x2F;BG =&gt; EG&#x2F;&#x2F;BC mà DF&#x2F;&#x2F;AB (do D; F là trung điểm của AC;CH) =&gt; DF đi qua trung điểm của BC =&gt; DF đi qua trung điểm EG (Ta lét(