K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Mình chỉ biết đến đây thôi: 

\(\Leftrightarrow\left(b-c\right)\left(a^3-b^3\right)+\left(a-b\right)\left(c^3-b^3\right)=2020^{2019}\)

\(\Leftrightarrow\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(c-b\right)\left(c^2+bc+b^2\right)=2020^{2019}\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-c^2-bc-b^2\right)=2020^{2019}\)

\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)=2020^{2019}\)

21 tháng 6 2019

Ta có

 \(VT=a^3\left(b-c\right)+\left(b^3c-bc^3\right)-a\left(b^3-c^3\right)\)

        \(=\left(b-c\right)\left(a^3+bc\left(b+c\right)-a\left(b^2+bc+c^2\right)\right)\)

        \(=\left(b-c\right)\left[\left(a^3-ab^2\right)+\left(b^2c-abc\right)+\left(bc^2-ac^2\right)\right]\)

        \(=\left(b-c\right)\left(a-b\right)\left[a\left(a+b\right)-bc-c^2\right]\)

       \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)

TH1   Nếu a,b,c chia 3 dư 0,1,2 =>\(a+b+c⋮3\)

TH2   Trừ TH trên 

Theo nguyên lí diricle luôn có 2 trong 3 số trên chia 3 cùng 1 số dư

Hay a-b hoặc b-c hoặc a-c chia hết cho 3

Từ 2 trường hợp 

=> \(VT⋮3\)

Mà VP chia 3 dư 1 do 2020 chia 3 dư 1

=> không có giá trị nào của a,b,c nguyên thỏa mãn đề bài

Vậy không có gia trị nào của a,b,c nguyên thỏa mãn đề bài

22 tháng 6 2019

mk ko biết

4 tháng 10 2020

Ta có: \(a+b+c=3\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow2\left(ab+bc+ca\right)=9-\left(a^2+b^2+c^2\right)=6\Rightarrow ab+bc+ca=3\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Mà a + b + c = 3 nên a = b = c = 1

Suy ra \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)

14 tháng 3 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-ac-bc+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a;b;c>0\Rightarrow a+b+c>0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

\(P=0\)

14 tháng 3 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a+b+c=0\)(bổ đề này khá phổ biến ,bạn có thế search gg mk hỏi lười )

sau đó thay vào xem được ko bạn ^_^

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

25 tháng 8 2019

Ta có : a + b + c = 6

=> ( a + b + c ) ^ 2 = 6 ^ 2 = 36

=> a ^ 2 + b ^ 2 + c ^ 2 + 2 x ( ab + bc + ca ) = 36

=> 12 + 2 x ( ab + bc + ca ) = 36 ( vì a ^ 2 + b ^ 2 + c ^ 2 = 12 )

=> 2 x ( ab + bc + ca ) = 36 - 12

=> 2 x ( ab + bc + ca ) = 24

=> ab + bc + ca = 12

Do đó ab + bc + ca = a ^ 2 + b ^ 2 + c ^ 2

=> a = b = c = 2 ( vì a + b + c = 6 )

Khi đó : P = ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020 + ( 2 - 3 ) ^ 2020

=> P = ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020 + ( - 1 ) ^ 2020

=> P = 1 + 1 + 1 = 3

Vậy P = 3

Cách 2:

Ta có: \(a^2+b^2+c^2=12\)

\(\Rightarrow a^2+b^2+c^2-12=0\)

\(\Rightarrow a^2+b^2+c^2-24+12=0\)

\(\Rightarrow a^2+b^2+c^2-4\left(a+b+c\right)+12=0\)(Vì a+b+c=6)

\(\Rightarrow\left(a^2-4a+4\right)+\left(b^2-4b+4\right)+\left(c^2-4c+4\right)=0\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-2\right)^2=0\\\left(b-2\right)^2=0\\\left(c-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-2=0\\b-2=0\\c-2=0\end{cases}}\Rightarrow a=b=c=2\)

Thay a=b=c=2 vào P, ta có:

\(P=\left(2-3\right)^{2020}+\left(2-3\right)^{2020}+\left(2-3\right)^{2020}\)

\(=1+1+1=3\)

P/s: Bài bạn nguyễn tuấn thảo  , chỗ để suy ra a=b=c=2 lm tắt quá nhé :))

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

25 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-thoa-man-2018le-abcle2019-tim-gtln-cua-bieu-thuc-plefta-bright2000leftb-cright2000leftc-aright.253535226325

25 tháng 2 2022

Không mất tính tổng quát giả sử \(a\ge b\ge c\)

đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^{2000}\le x\\y^{2000}\le y\\z^{2000}\le z\end{matrix}\right.\)

\(\Rightarrow P=x^{2000}+y^{2000}+z^{2000}\le x+y+z=2z\le2\)

\(\Rightarrow P_{max}=1\) khi (x;y;z)=(0;1;1) và hoán vị

\(\Rightarrow\left(a;b;c\right)=\left(2018;2018;2019\right)\) và hoán vị

 

25 tháng 2 2022

Max=2 bạn nhá