K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

hộ mình với nha

22 tháng 3 2019

Ta có:

+ MP= 132= 169

+ MN2+NP2= 52+122= 25+144=169

=> MP= MN2+NP(169=169)

Vậy tam giác MNP vuông tại N (Pytago đảo)

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

a: Xét ΔMNP có \(NP^2=MP^2+MN^2\)

nên ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

\(\widehat{MND}=\widehat{END}\)

DO đó: ΔNMD=ΔNED

Suy ra: DM=DE

a: ta có: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

hay HN=HP

b: NH=NP/2=8/2=4(cm)

=>MH=3(cm)

c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có

MH chung

\(\widehat{DMH}=\widehat{EMH}\)

Do đó: ΔMDH=ΔMEH

Suy ra: HD=HE

hay ΔHED cân tại H

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE