Cho pt x^2 -2(k+2)x- 2k-6=0
a) gọi x1 x2 là 2 nghiệm của pt. Tìm giá trị nhỏ nhất của A=(x1-x2)^2 và giá trị k tương ứng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm
Phương trình: \(x^2-3x+2m+2=0\left(1\right)\)
a/ Thay m=0 vào phương trình (1) ta được;
\(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy khi m=0 thì phương trình (1) có \(S=\left\{2;1\right\}\)
b/ Xét phương trình (1) có:
\(\Delta=\left(-3\right)^2-4.1.\left(2m+2\right)\)
= \(9-8m-8=1-8m\)
Để phương trình (1) có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow1-8m\ge0\Leftrightarrow m\le\dfrac{1}{8}\)
Vậy để phương trình (1) có nghiệm thì m\(\le\dfrac{1}{8}\)
c/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=2m+2\end{matrix}\right.\)
Theo đề bài ta có:
A=\(x_1^2+x_2^2+x_1^2.x_2^2\)
= \(x_1^2+2x_1x_2+x_2^2-2x_1x_2+x_1^2x_2^2\)
= \(\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1x_2\right)^2\)
= \(3^2-2\left(2m+2\right)+\left(2m+2\right)^2\)
= \(9-4m-4+4m^2+8m+4\)
= \(4m^2+4m+9\)
= \(4m^2+4m+1+8=\left(2m+1\right)^2+8\)
Ta luôn có:
\(\left(2m+1\right)^2\ge0\) với mọi m
\(\Rightarrow\left(2m+1\right)^2+8\ge8\) với mọi m
Dấu "=" xảy ra \(\Leftrightarrow\left(2m+1\right)^2=0\Leftrightarrow2m+1=0\Leftrightarrow m=\dfrac{-1}{2}\) (tmđk)
Vậy GTNN của A=\(x_1^2+x_2^2+x_1^2x_2^2\) là 8 khi m=\(\dfrac{-1}{2}\)
Do \(x_1\) và \(x_2\) là nghiệm của phương trình . Theo định lí vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2k+4\\x_1x_2=-2k-6\end{matrix}\right.\)
\(A=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2k+4\right)^2-4\left(-2k-6\right)\)
\(=4k^2+16k+16+8k+24\)
\(=4k^2+24k+40\)
\(=4k^2+24k+36+4\)
\(=\left(2k+6\right)^2+4\ge4\)
Vậy GTNN của A là 4 khi \(\left(2k+6\right)^2=0\Leftrightarrow k=-3\)