cho đường tròn tâm O bán kính R và dây AB cố định (AB<2R). Gọi I là điểm chính giữa cung lớn AB, K là trung điểm dây AB, M là điểm bất kì trên cung nhỏ BI (M khác B,I). Qua A kẻ đường vuông góc với MI tại H cắt tia BM tại C. Tìm vị trí điểm M để chu vi tam giác AMC lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.
\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.
\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.
Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.
\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)
Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.
a.
Gọi D là trung điểm BC \(\Rightarrow OD\perp BC\)
Gọi E là trung điểm AM \(\Rightarrow OE\perp AM\)
\(\Rightarrow\) Tứ giác OEMD là hình chữ nhật (có 3 góc vuông)
\(\Rightarrow MD=OE\) và \(ME=OD\)
\(MA^2+MB^2+MC^2=MA^2+\left(BD-MD\right)^2+\left(DC+MD\right)^2\)
\(=\left(2ME\right)^2+\left(BD-MD\right)^2+\left(BD+MD\right)^2\) (do \(BD=CD\))
\(=4ME^2+2BD^2+2MD^2\)
\(=2\left(ME^2+BD^2\right)+2\left(ME^2+MD^2\right)\)
\(=2\left(OD^2+BD^2\right)+2\left(OD^2+MD^2\right)\)
\(=2OB^2+2OM^2\)
\(=2R^2+2r^2\) cố định (đpcm)
b. Gọi G là giao điểm OM và AD
Theo c/m câu a ta có \(\left\{{}\begin{matrix}OD||AM\\OD=EM=\dfrac{1}{2}AM\end{matrix}\right.\)
Theo định lý Talet: \(\dfrac{DG}{AG}=\dfrac{OD}{AM}=\dfrac{OG}{GM}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AD\\OG=\dfrac{1}{3}OM\end{matrix}\right.\)
Do O, M cố định \(\Rightarrow\) G cố định
Mặt khác trong tam giác ABC do D là trung điểm AB \(\Rightarrow\) AD là trung tuyến
Mà \(AG=\dfrac{2}{3}AD\Rightarrow\) G là trọng tâm tam giác ABC
\(\Rightarrow\) Trọng tâm tam giác ABC cố định