cho \(A_1\)=\(40^0,B^1=50^0,AOB=90^0\)
a)CHỨNG MINH a//b
b)TÍNH CDB
Giups mk nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^0\)(kề bù)
\(\Rightarrow\widehat{D_1}=180^0-110^0=70^0\)
\(\Rightarrow\widehat{D_1}=\widehat{C_1}=70^0\)
Mà 2 góc này đồng vị
=> a//b
b) Ta có: a//b,a⊥c
=> c⊥b(từ vuông góc đến song song)
\(M=\left(-a+b\right)-\left(b+c-a\right)+\left(c-a\right)\)
\(M=-a+b-b-c+a+c-a\)
\(M=\left(-a+a\right)+\left(-b+b\right)+\left(-c+c\right)-a\)
\(M=-a\)
Vì \(a< 0\Rightarrow-a=-\left(-a\right)>0\)
\(\Rightarrow M>0\)
a)AOD+COD=AOC=>AOD=AOC-COD=90o-COD
BOD+COD=BOD=>BOC=BOD-COD=900-COD
b)ta có OM nằm trong góc AOB (1)
O1+O2=AOM;O4+O3=BOD
Mà O1=O4;O2=O3(2)
=>AOM=BOM
từ (1) và (2) =>OM là tia phân giác AOB
a) Hai góc AOB và BOC kề nhau mà có các tia phân giác vuông góc với nhau nên hai góc AOB và BOC kề bù
=> góc AOB + góc BOC = 180o
=> A,O,C thẳng hàng
b) Theo câu a đã có góc AOB + góc BOC = 180o
=> 90o + góc BOC = 180o
=> góc BOC = 90o
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
Bn ơi bn ko đánh số vào từng góc kìa
ờ để mk lm lại