Cho tam giác ABC vuông tại A, có góc C= 30 độ, CM:AB=1/2BC (bạn nào giải giúp mik bài này thì ghi rõ phần cm tam giác cân nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BD; CE là đường cao => tam giác ABD và tam giác ACE vuông : có: AB = AC (do tam giác ABC cân tại A ); góc A chung
=> tam giác ABD = ACE (cạnh huyền - góc nhọn )
b) Tam giác BDC vuông tại D có trung tuyến DH ứng với cạnh huyền BC => DH = HC = BC/ 2
=> tam giác HDC cân tại H
c) sửa đề: chứng minh: DM = MC
Tam giác DHC cân tại H có HM là đuơng cao nên đông thời là đường trung tuyến => M là TĐ của DC=> DM = MC
d) Tam giác HND vuông tại M có: MI là trung tuyến => MI = HI = HD/2
=> tam giác IHM cân tại I => góc IHM = IMH
lại có HM là p/g của góc DHC => góc IHM = MHC
=> góc IMH = MHC mà 2 góc này ở vị trí SLT => MI // HC mà HC vuông góc với AH
=> MI vuông góc với AH
bạn Nobita Kun giải bài không theo điểm như đề bài cho, ý c đề bài đúng rồi ạ. ý d thì bạn hiểu nhầm đề rồi, bạn xem lại điểm I nhé
mk ko rảnh cho lắm nên bạn nhấn link mà tra nha
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A+c%C3%B3+g%C3%B3c+B+=+30+%C4%91%E1%BB%99+.a)+T%C3%ADnh+g%C3%B3c+C+b)+v%E1%BA%BD+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+C+c%E1%BA%AFt+c%E1%BA%A1nh+AB+t%E1%BA%A1i+D+.+Tr%C3%AAn+c%E1%BA%A1nh+CB+l%E1%BA%A5y+%C4%91i%E1%BB%83m+M+sao+cho+CM+=+CA+.+CMR+:+tam+gi%C3%A1c+ACD+=+tam+gi%C3%A1c+MCD+.Qua+C+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+xy+vu%C3%B4ng+g%C3%B3c+CA+.+T%E1%BB%AB+A+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+//+vs+CD+c%E1%BA%AFt+xy+%E1%BB%9F+K+.+Cm+:+AK+=+CDc)+t%C3%ADnh+g%C3%B3c+AKC+&id=990903
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Ta kẻ đường trung tuyến AH cắt cạnh BC(BH=HC)
Ta có AH=HB( Tính chất đường trung tuyến ứng với cạnh huyền)
Suy ra: tam giác HAB cân tại H (1)
Xét tam giác ABC có: \(\widebat{A}+\widebat{B}+\widebat{C}=180_{ }\) độ
...(bạn tự tính nốt đoạn này nha)
Suy ra \(\widebat{B}=60\)(2)
Từ 1 và 2 suy ra tam giác HAB là tam giác đều
Nên AB=HA=HB(T/C tam giác đều)
Lại có HB=\(\frac{1}{2}BC\)nên AB=\(\frac{1}{2}BC\)